[go: up one dir, main page]

login
Search: a282615 -id:a282615
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of ways to split {1, 2, 3, ..., 3n} into n arithmetic progressions each with 3 terms.
+0
40
1, 1, 2, 5, 15, 55, 232, 1161, 6643, 44566, 327064, 2709050, 24312028, 240833770, 2546215687, 29251369570, 355838858402, 4658866773664
OFFSET
0,3
REFERENCES
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
LINKS
R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission]. See sequence "M".
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.] Gives a(0)-a(10).
EXAMPLE
{{{1,2,3},{4,5,6},{7,8,9}}, {{1,2,3},{4,6,8},{5,7,9}}, {{1,3,5},{2,4,6},{7,8,9}}, {{1,4,7},{2,5,8},{3,6,9}}, {{1,5,9},{2,3,4},{6,7,8}}} are the 5 ways to split 1, 2, 3, ..., 9 into 3 arithmetic progressions each with 3 elements. Thus a(3)=5.
CROSSREFS
All of A279197, A279198, A202705, A279199, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849, A334250.
KEYWORD
nonn,nice,more
AUTHOR
Jonas Wallgren, Mar 17 2005
EXTENSIONS
a(11)-a(14) from Alois P. Heinz, Dec 28 2011
a(15)-a(17) from Fausto A. C. Cariboni, Feb 22 2017
STATUS
approved
Number of irreducible ways to split 1, 2, 3, ..., 3n into n arithmetic progressions each with 3 terms.
+0
10
1, 1, 1, 2, 6, 25, 115, 649, 4046, 29674, 228030, 1987700, 18402704, 188255116, 2030067605, 23829298479, 293949166112, 3909410101509
OFFSET
0,4
COMMENTS
"Irreducible" means that there is no j such that the first j of the triples are a partition of 1, ..., 3j.
REFERENCES
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
LINKS
R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] See sequence "K".
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.] Gives a(0)-a(10).
FORMULA
G.f. = 1 - 1/g where g is g.f. for A104429.
a(n) = A279197(n) + 2*A279198(n) for n>0.
CROSSREFS
All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849.
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Dec 26 2011
EXTENSIONS
a(11)-a(14) from Alois P. Heinz, Dec 28 2011
a(15)-a(17) from Fausto A. C. Cariboni, Feb 22 2017
STATUS
approved
Number of self-conjugate inseparable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).
+0
10
1, 1, 2, 2, 11, 11, 55, 58, 486, 442, 4218, 3924, 45096, 42013, 538537, 505830, 7368091
OFFSET
1,3
COMMENTS
In Richard Guy's letter, the term 50 is marked with a question mark. Peter Kagey has shown that the value should be 55. - N. J. A. Sloane, Feb 15 2017
From Peter Kagey, Feb 14 2017: (Start)
An inseparable solution is one in which "there is no j such that the first j of the triples are a partition of 1, ..., 3j" (See A202705.)
A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
(End)
REFERENCES
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
LINKS
R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] See sequence "I".
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
EXAMPLE
Examples of solutions X,Y,Z for n=5:
2,4,3
5,7,6
1,15,8
9,11,10
12,14,13
and in his letter Richard Guy has drawn links pairing the first and fifth solutions, and the second and fourth solutions.
For n = 2 the a(2) = 1 solution is
[(2,6,4),(1,5,3)].
For n = 3 the a(3) = 2 solutions are
[(1,7,4),(3,9,6),(2,8,5)] and
[(2,4,3),(6,8,7),(1,9,5)].
CROSSREFS
All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849.
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Dec 15 2016
EXTENSIONS
a(7) corrected and a(8)-a(13) added by Peter Kagey, Feb 14 2017
a(14)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
STATUS
approved
Number of pairs of conjugate inseparable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).
+0
6
0, 0, 0, 2, 7, 52, 297, 1994, 14594, 113794, 991741, 9199390, 94105010, 1015012796, 11914379971, 146974330141, 1954701366709
OFFSET
1,4
REFERENCES
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
Nowakowski, Richard Joseph, Generalization of the Langford-Skolem problem, MS Thesis, University of Calgary, 1975.
LINKS
R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] See sequence "J".
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
FORMULA
A279197(n) + 2*A279198(n) = A202705(n).
EXAMPLE
Richard Guy gives examples in his letter.
CROSSREFS
All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849.
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Dec 15 2016
EXTENSIONS
a(7)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
STATUS
approved
Number of reducible ways to split 1, 2, 3, ..., 3n into n arithmetic progressions each with 3 terms: a(n) = A104429(n) - A202705(n).
+0
10
0, 0, 1, 3, 9, 30, 117, 512, 2597, 14892, 99034, 721350, 5909324, 52578654, 516148082, 5422071091, 61889692290, 749456672155
OFFSET
0,4
REFERENCES
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, Univ. Calgary, Dept. Mathematics, Research Paper No. 129, 1971.
R. K. Guy, Sedlacek's Conjecture on Disjoint Solutions of x+y= z, in Proc. Conf. Number Theory. Pullman, WA, 1971, pp. 221-223.
R. K. Guy, Packing [1,n] with solutions of ax + by = cz; the unity of combinatorics, in Colloq. Internaz. Teorie Combinatorie. Rome, 1973, Atti Conv. Lincei. Vol. 17, Part II, pp. 173-179, 1976.
LINKS
R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission] See sequence "L".
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
CROSSREFS
All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways.
See also A002848, A002849.
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Dec 15 2016
EXTENSIONS
Definition corrected by N. J. A. Sloane, Jan 09 2017 at the suggestion of Fausto A. C. Cariboni.
a(15)-a(17) from Fausto A. C. Cariboni, Feb 22 2017
STATUS
approved
Number of self-conjugate solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).
+0
5
1, 2, 3, 5, 15, 20, 75, 93, 588, 602, 4954, 4854, 51068, 48779, 597554, 567644, 8039742
OFFSET
1,2
COMMENTS
A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
| separable | inseparable | either |
-------------------+-----------+-------------+---------+
self-conjugate | A282615 | A279197 | A282616 |
non-self-conjugate | A282618 | A282617 | A282619 |
either | A279199 | A202705 | A104429 |
FORMULA
a(n) = A282615(n) + A279197(n).
a(n) = A104429(n) - A282619(n).
EXAMPLE
For n = 3 the a(3) = 3 solutions are:
(7,9,8),(4,6,5),(1,3,2),
(3,9,6),(2,8,5),(1,7,4), and
(6,8,7),(2,4,3),(1,9,5).
KEYWORD
nonn,more
AUTHOR
Peter Kagey, Feb 19 2017
EXTENSIONS
a(11)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
STATUS
approved
Number of non-self-conjugate inseparable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).
+0
5
0, 0, 0, 4, 14, 104, 594, 3988, 29188, 227588, 1983482, 18398780, 188210020, 2030025592, 23828759942, 293948660282, 3909402733418
OFFSET
1,4
COMMENTS
An inseparable solution is one in which "there is no j such that the first j of the triples are a partition of 1, ..., 3j" (see A202705).
A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
| separable | inseparable | either |
-------------------+-----------+-------------+---------+
self-conjugate | A282615 | A279197 | A282616 |
non-self-conjugate | A282618 | A282617 | A282619 |
either | A279199 | A202705 | A104429 |
FORMULA
a(n) = A282619(n) - A282618(n).
a(n) = A202705(n) - A279197(n).
EXAMPLE
For n = 4 the a(4) = 4 solutions are:
(7,11,9),(4,12,8),(2,10,6),(1,5,3),
(9,11,10),(4,8,6),(2,12,7),(1,5,3),
(8,12,10),(3,11,7),(2,6,4),(1,9,5), and
(8,12,10),(5,9,7),(2,4,3),(1,11,6).
KEYWORD
nonn,more
AUTHOR
Peter Kagey, Feb 19 2017
EXTENSIONS
a(10)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
STATUS
approved
Number of non-self-conjugate separable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).
+0
5
0, 0, 2, 6, 26, 108, 492, 2562, 14790, 98874, 720614, 5908394, 52572682, 516141316, 5422012074, 61889630476, 749456000504
OFFSET
1,3
COMMENTS
An inseparable solution is one in which "there is no j such that the first j of the triples are a partition of 1, ..., 3j" (see A202705).
A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
| separable | inseparable | either |
-------------------+-----------+-------------+---------+
self-conjugate | A282615 | A279197 | A282616 |
non-self-conjugate | A282618 | A282617 | A282619 |
either | A279199 | A202705 | A104429 |
FORMULA
a(n) = A282619(n) - A282617(n).
a(n) = A279199(n) - A282615(n).
EXAMPLE
For n = 3 the a(3) = 2 solutions are:
(5,9,7),(4,8,6),(1,3,2), and
(7,9,8),(2,6,4),(1,5,3).
KEYWORD
nonn,more
AUTHOR
Peter Kagey, Feb 19 2017
EXTENSIONS
a(10)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
STATUS
approved
Number of non-self-conjugate solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}).
+0
5
0, 0, 2, 10, 40, 212, 1086, 6550, 43978, 326462, 2704096, 24307174, 240782702, 2546166908, 29250772016, 355838290758, 4658858733922
OFFSET
1,3
COMMENTS
A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1.
| separable | inseparable | either |
-------------------+-----------+-------------+---------+
self-conjugate | A282615 | A279197 | A282616 |
non-self-conjugate | A282618 | A282617 | A282619 |
either | A279199 | A202705 | A104429 |
FORMULA
a(n) = A282617(n) + A282618(n).
a(n) = A104429(n) - A282616(n).
EXAMPLE
For n = 3 the a(3) = 3 solutions are
(5,9,7),(4,8,6),(1,3,2),
(7,9,8),(2,6,4),(1,5,3).
KEYWORD
nonn,more
AUTHOR
Peter Kagey, Feb 19 2017
EXTENSIONS
a(11)-a(16) from Fausto A. C. Cariboni, Feb 27 2017
a(17) from Fausto A. C. Cariboni, Mar 22 2017
STATUS
approved

Search completed in 0.008 seconds