[go: up one dir, main page]

login
Search: a258651 -id:a258651
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n' = arithmetic derivative of n: a(0) = a(1) = 0, a(prime) = 1, a(m*n) = m*a(n) + n*a(m).
(Formerly M3196)
+10
1066
0, 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 10, 13, 1, 44, 10, 15, 27, 32, 1, 31, 1, 80, 14, 19, 12, 60, 1, 21, 16, 68, 1, 41, 1, 48, 39, 25, 1, 112, 14, 45, 20, 56, 1, 81, 16, 92, 22, 31, 1, 92, 1, 33, 51, 192, 18, 61, 1, 72, 26, 59, 1, 156, 1, 39, 55, 80, 18, 71
OFFSET
0,5
COMMENTS
Can be extended to negative numbers by defining a(-n) = -a(n).
Based on the product rule for differentiation of functions: for functions f(x) and g(x), (fg)' = f'g + fg'. So with numbers, (ab)' = a'b + ab'. This implies 1' = 0. - Kerry Mitchell, Mar 18 2004
The derivative of a number x with respect to a prime number p as being the number "dx/dp" = (x-x^p)/p, which is an integer due to Fermat's little theorem. - Alexandru Buium, Mar 18 2004
The relation (ab)' = a'b + ab' implies 1' = 0, but it does not imply p' = 1 for p a prime. In fact, any function f defined on the primes can be extended uniquely to a function on the integers satisfying this relation: f(Product_i p_i^e_i) = (Product_i p_i^e_i) * (Sum_i e_i*f(p_i)/p_i). - Franklin T. Adams-Watters, Nov 07 2006
See A131116 and A131117 for record values and where they occur. - Reinhard Zumkeller, Jun 17 2007
Let n be the product of a multiset P of k primes. Consider the k-dimensional box whose edges are the elements of P. Then the (k-1)-dimensional surface of this box is 2*a(n). For example, 2*a(25) = 20, the perimeter of a 5 X 5 square. Similarly, 2*a(18) = 42, the surface area of a 2 X 3 X 3 box. - David W. Wilson, Mar 11 2011
The arithmetic derivative n' was introduced, probably for the first time, by the Spanish mathematician José Mingot Shelly in June 1911 with "Una cuestión de la teoría de los números", work presented at the "Tercer Congreso Nacional para el Progreso de las Ciencias, Granada", cf. link to the abstract on Zentralblatt MATH, and L. E. Dickson, History of the Theory of Numbers. - Giorgio Balzarotti, Oct 19 2013
a(A235991(n)) odd; a(A235992(n)) even. - Reinhard Zumkeller, Mar 11 2014
Sequence A157037 lists numbers with prime arithmetic derivative, i.e., indices of primes in this sequence. - M. F. Hasler, Apr 07 2015
Maybe the simplest "natural extension" of the arithmetic derivative, in the spirit of the above remark by Franklin T. Adams-Watters (2006), is the "pi based" version where f(p) = primepi(p), see sequence A258851. When f is chosen to be the identity map (on primes), one gets A066959. - M. F. Hasler, Jul 13 2015
When n is composite, it appears that a(n) has lower bound 2*sqrt(n), with equality when n is the square of a prime, and a(n) has upper bound (n/2)*log_2(n), with equality when n is a power of 2. - Daniel Forgues, Jun 22 2016
If n = p1*p2*p3*... where p1, p2, p3, ... are all the prime factors of n (not necessarily distinct), and h is a real number (we assume h nonnegative and < 1), the arithmetic derivative of n is equivalent to n' = lim_{h->0} ((p1+h)*(p2+h)*(p3+h)*... - (p1*p2*p3*...))/h. It also follows that the arithmetic derivative of a prime is 1. We could assume h = 1/N, where N is an integer; then the limit becomes {N -> oo}. Note that n = 1 is not a prime and plays the role of constant. - Giorgio Balzarotti, May 01 2023
REFERENCES
G. Balzarotti, P. P. Lava, La derivata aritmetica, Editore U. Hoepli, Milano, 2013.
E. J. Barbeau, Problem, Canad. Math. Congress Notes, 5 (No. 8, April 1973), 6-7.
L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chapter XIX, p. 451, Dover Edition, 2005. (Work originally published in 1919.)
A. M. Gleason et al., The William Lowell Putnam Mathematical Competition: Problems and Solutions 1938-1964, Math. Assoc. America, 1980, p. 295.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Krassimir T. Atanassov, A formula for the n-th prime number, Comptes rendus de l'Académie bulgare des Sciences, Tome 66, No 4, 2013.
E. J. Barbeau, Remark on an arithmetic derivative, Canad. Math. Bull. vol. 4, no. 2, May 1961.
A. Buium, Home Page
A. Buium, Differential characters of Abelian varieties over p-adic fields, Invent. Math. 122 (1995), no. 2, 309-340.
A. Buium, Geometry of p-jets, Duke Math. J. 82 (1996), no. 2, 349-367.
A. Buium, Arithmetic analogues of derivations, J. Algebra 198 (1997), no. 1, 290-299.
A. Buium, Differential modular forms, J. Reine Angew. Math. 520 (2000), 95-167.
Brad Emmons and Xiao Xiao, The Arithmetic Partial Derivative, arXiv:2201.12453 [math.NT], 2022.
José María Grau and Antonio M. Oller-Marcén, Giuga Numbers and the Arithmetic Derivative, Journal of Integer Sequences, Vol. 15 (2012), #12.4.1.
P. Haukkanen, M. Mattila, J. K. Merikoski and T. Tossavainen, Can the Arithmetic Derivative be Defined on a Non-Unique Factorization Domain?, Journal of Integer Sequences, 16 (2013), #13.1.2. - From N. J. A. Sloane, Feb 03 2013
P. Haukkanen, J. K. Merikoski and T. Tossavainen, Asymptotics of partial sums of the Dirichlet series of the arithmetic derivative, Mathematical Communications 25 (2020), 107-115.
Antti Karttunen, Program in LODA-assembly
J. Kovič, The Arithmetic Derivative and Antiderivative, Journal of Integer Sequences 15 (2012), Article 12.3.8.
Ivars Peterson, Deriving the Structure of Numbers, Science News, March 20, 2004.
D. J. M. Shelly, Una cuestión de la teoria de los numeros, Asociation Esp. Granada 1911, 1-12 S (1911). (Abstract of ref. JFM42.0209.02 on zbMATH.org)
T. Tossavainen, P. Haukkanen, J. K. Merikoski, and M. Mattila, We can differentiate numbers, too, The College Mathematics Journal 55 (2024), no. 2, 100-108.
Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003, #03.3.4.
Linda Westrick, Investigations of the Number Derivative, Siemens Foundation competition 2003 and Intel Science Talent Search 2004.
FORMULA
If n = Product p_i^e_i, a(n) = n * Sum (e_i/p_i).
a(m*p^p) = (m + a(m))*p^p, p prime: a(m*A051674(k))=A129283(m)*A051674(k). - Reinhard Zumkeller, Apr 07 2007
For n > 1: a(n) = a(A032742(n)) * A020639(n) + A032742(n). - Reinhard Zumkeller, May 09 2011
a(n) = n * Sum_{p|n} v_p(n)/p, where v_p(n) is the largest power of the prime p dividing n. - Wesley Ivan Hurt, Jul 12 2015
For n >= 2, Sum_{k=2..n} floor(1/a(k)) = pi(n) = A000720(n) (see K. T. Atanassov article). - Ivan N. Ianakiev, Mar 22 2019
From A.H.M. Smeets, Jan 17 2020: (Start)
Limit_{n -> oo} (1/n^2)*Sum_{i=1..n} a(i) = A136141/2.
Limit_{n -> oo} (1/n)*Sum_{i=1..n} a(i)/i = A136141.
a(n) = n if and only if n = p^p, where p is a prime number. (End)
Dirichlet g.f.: zeta(s-1)*Sum_{p prime} 1/(p^s-p), see A136141 (s=2), A369632 (s=3) [Haukkanen, Merikoski and Tossavainen]. - Sebastian Karlsson, Nov 25 2021
From Antti Karttunen, Nov 25 2021: (Start)
a(n) = Sum_{d|n} d * A349394(n/d).
For all n >= 1, A322582(n) <= a(n) <= A348507(n).
If n is not a prime, then a(n) >= 2*sqrt(n), or in other words, for all k >= 1 for which A002620(n)+k is not a prime, we have a(A002620(n)+k) > n. [See Ufnarovski and Åhlander, Theorem 9, point (3).]
(End)
EXAMPLE
6' = (2*3)' = 2'*3 + 2*3' = 1*3 + 2*1 = 5.
Note that, for example, 2' + 3' = 1 + 1 = 2, (2+3)' = 5' = 1. So ' is not linear.
G.f. = x^2 + x^3 + 4*x^4 + x^5 + 5*x^6 + x^7 + 12*x^8 + 6*x^9 + 7*x^10 + ...
MAPLE
A003415 := proc(n) local B, m, i, t1, t2, t3; B := 1000000000039; if n<=1 then RETURN(0); fi; if isprime(n) then RETURN(1); fi; t1 := ifactor(B*n); m := nops(t1); t2 := 0; for i from 1 to m do t3 := op(i, t1); if nops(t3) = 1 then t2 := t2+1/op(t3); else t2 := t2+op(2, t3)/op(op(1, t3)); fi od: t2 := t2-1/B; n*t2; end;
A003415 := proc(n)
local a, f;
a := 0 ;
for f in ifactors(n)[2] do
a := a+ op(2, f)/op(1, f);
end do;
n*a ;
end proc: # R. J. Mathar, Apr 05 2012
MATHEMATICA
a[ n_] := If[ Abs @ n < 2, 0, n Total[ #2 / #1 & @@@ FactorInteger[ Abs @ n]]]; (* Michael Somos, Apr 12 2011 *)
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Table[dn[n], {n, 0, 100}] (* T. D. Noe, Sep 28 2012 *)
PROG
(PARI) A003415(n) = {local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))} /* Michael B. Porter, Nov 25 2009 */
(PARI) apply( A003415(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]), [0..99]) \\ M. F. Hasler, Sep 25 2013, updated Nov 27 2019
(PARI) A003415(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= spf); (s); }; \\ Antti Karttunen, Mar 10 2021
(PARI) a(n) = my(f=factor(n), r=[1/(e+!e)|e<-f[, 1]], c=f[, 2]); n*r*c; \\ Ruud H.G. van Tol, Sep 03 2023
(Haskell)
a003415 0 = 0
a003415 n = ad n a000040_list where
ad 1 _ = 0
ad n ps'@(p:ps)
| n < p * p = 1
| r > 0 = ad n ps
| otherwise = n' + p * ad n' ps' where
(n', r) = divMod n p
-- Reinhard Zumkeller, May 09 2011
(Magma) Ad:=func<h | h*(&+[Factorisation(h)[i][2]/Factorisation(h)[i][1]: i in [1..#Factorisation(h)]])>; [n le 1 select 0 else Ad(n): n in [0..80]]; // Bruno Berselli, Oct 22 2013
(Python)
from sympy import factorint
def A003415(n):
return sum([int(n*e/p) for p, e in factorint(n).items()]) if n > 1 else 0
# Chai Wah Wu, Aug 21 2014
(Sage)
def A003415(n):
F = [] if n == 0 else factor(n)
return n * sum(g / f for f, g in F)
[A003415(n) for n in range(79)] # Peter Luschny, Aug 23 2014
(GAP)
A003415:= Concatenation([0, 0], List(List([2..10^3], Factors),
i->Product(i)*Sum(i, j->1/j))); # Muniru A Asiru, Aug 31 2017
(APL, Dyalog dialect) A003415 ← { ⍺←(0 1 2) ⋄ ⍵≤1:⊃⍺ ⋄ 0=(3⊃⍺)|⍵:((⊃⍺+(2⊃⍺)×(⍵÷3⊃⍺)) ((2⊃⍺)×(3⊃⍺)) (3⊃⍺)) ∇ ⍵÷3⊃⍺ ⋄ ((⊃⍺) (2⊃⍺) (1+(3⊃⍺))) ∇ ⍵} ⍝ Antti Karttunen, Feb 18 2024
CROSSREFS
Cf. A086134 (least prime factor of n').
Cf. A086131 (greatest prime factor of n').
Cf. A068719 (derivative of 2n).
Cf. A068720 (derivative of n^2).
Cf. A068721 (derivative of n^3).
Cf. A001787 (derivative of 2^n).
Cf. A027471 (derivative of 3^(n-1)).
Cf. A085708 (derivative of 10^n).
Cf. A068327 (derivative of n^n).
Cf. A024451 (derivative of p#).
Cf. A068237 (numerator of derivative of 1/n).
Cf. A068238 (denominator of derivative of 1/n).
Cf. A068328 (derivative of squarefree numbers).
Cf. A068311 (derivative of n!).
Cf. A168386 (derivative of n!!).
Cf. A260619 (derivative of hyperfactorial(n)).
Cf. A260620 (derivative of superfactorial(n)).
Cf. A068312 (derivative of triangular numbers).
Cf. A068329 (derivative of Fibonacci(n)).
Cf. A096371 (derivative of partition number).
Cf. A099301 (derivative of d(n)).
Cf. A099310 (derivative of phi(n)).
Cf. A342925 (derivative of sigma(n)).
Cf. A349905 (derivative of prime shift).
Cf. A327860 (derivative of primorial base exp-function).
Cf. A369252 (derivative of products of three odd primes), A369251 (same sorted).
Cf. A068346 (second derivative of n).
Cf. A099306 (third derivative of n).
Cf. A258644 (fourth derivative of n).
Cf. A258645 (fifth derivative of n).
Cf. A258646 (sixth derivative of n).
Cf. A258647 (seventh derivative of n).
Cf. A258648 (eighth derivative of n).
Cf. A258649 (ninth derivative of n).
Cf. A258650 (tenth derivative of n).
Cf. A185232 (n-th derivative of n).
Cf. A258651 (A(n,k) = k-th arithmetic derivative of n).
Cf. A085731 (gcd(n,n')), A083345 (n'/gcd(n,n')), A057521 (gcd(n, (n')^k) for k>1).
Cf. A342014 (n' mod n), A369049 (n mod n').
Cf. A341998 (A003557(n')), A342001 (n'/A003557(n)).
Cf. A098699 (least x such that x' = n, antiderivative of n).
Cf. A098700 (n such that x' = n has no integer solution).
Cf. A099302 (number of solutions to x' = n).
Cf. A099303 (greatest x such that x' = n).
Cf. A051674 (n such that n' = n).
Cf. A083347 (n such that n' < n).
Cf. A083348 (n such that n' > n).
Cf. A099304 (least k such that (n+k)' = n' + k').
Cf. A099305 (number of solutions to (n+k)' = n' + k').
Cf. A328235 (least k > 0 such that (n+k)' = u * n' for some natural number u).
Cf. A328236 (least m > 1 such that (m*n)' = u * n' for some natural number u).
Cf. A099307 (least k such that the k-th arithmetic derivative of n is zero).
Cf. A099308 (k-th arithmetic derivative of n is zero for some k).
Cf. A099309 (k-th arithmetic derivative of n is nonzero for all k).
Cf. A129150 (n-th derivative of 2^3).
Cf. A129151 (n-th derivative of 3^4).
Cf. A129152 (n-th derivative of 5^6).
Cf. A189481 (x' = n has a unique solution).
Cf. A190121 (partial sums).
Cf. A258057 (first differences).
Cf. A229501 (n divides the n-th partial sum).
Cf. A165560 (parity).
Cf. A235991 (n' is odd), A235992 (n' is even).
Cf. A327863, A327864, A327865 (n' is a multiple of 3, 4, 5).
Cf. A157037 (n' is prime), A192192 (n'' is prime), A328239 (n''' is prime).
Cf. A328393 (n' is squarefree), A328234 (squarefree and > 1).
Cf. A328244 (n'' is squarefree), A328246 (n''' is squarefree).
Cf. A328303 (n' is not squarefree), A328252 (n' is squarefree, but n is not).
Cf. A328248 (least k such that the (k-1)-th derivative of n is squarefree).
Cf. A328251 (k-th arithmetic derivative is never squarefree for any k >= 0).
Cf. A256750 (least k such that the k-th derivative is either 0 or has a factor p^p).
Cf. A327928 (number of distinct primes p such that p^p divides n').
Cf. A342003 (max. exponent k for any prime power p^k that divides n').
Cf. A327929 (n' has at least one divisor of the form p^p).
Cf. A327978 (n' is primorial number > 1).
Cf. A328243 (n' is a partial sum of primorial numbers and larger than one).
Cf. A328310 (maximal prime exponent of n' minus maximal prime exponent of n).
Cf. A328320 (max. prime exponent of n' is less than that of n).
Cf. A328321 (max. prime exponent of n' is >= that of n).
Cf. A328383 (least k such that the k-th derivative of n is either a multiple or a divisor of n, but not both).
Cf. A263111 (the ordinal transform of a).
Cf. A300251, A319684 (Möbius and inverse Möbius transform).
Cf. A305809 (Dirichlet convolution square).
Cf. A349133, A349173, A349394, A349380, A349618, A349619, A349620, A349621 (for miscellaneous Dirichlet convolutions).
Cf. A069359 (similar formula which agrees on squarefree numbers).
Cf. A258851 (the pi-based arithmetic derivative of n).
Cf. A328768, A328769 (primorial-based arithmetic derivatives of n).
Cf. A328845, A328846 (Fibonacci-based arithmetic derivatives of n).
Cf. A302055, A327963, A327965, A328099 (for other variants and modifications).
Cf. A038554 (another sequence using "derivative" in its name, but involving binary expansion of n).
Cf. A322582, A348507 (lower and upper bounds), also A002620.
KEYWORD
nonn,easy,nice,hear,look
EXTENSIONS
More terms from Michel ten Voorde, Apr 11 2001
STATUS
approved
a(n) = n'' = second arithmetic derivative of n.
+10
49
0, 0, 0, 0, 4, 0, 1, 0, 16, 5, 1, 0, 32, 0, 6, 12, 80, 0, 10, 0, 44, 7, 1, 0, 48, 7, 8, 27, 80, 0, 1, 0, 176, 9, 1, 16, 92, 0, 10, 32, 72, 0, 1, 0, 112, 16, 10, 0, 240, 9, 39, 24, 92, 0, 108, 32, 96, 13, 1, 0, 96, 0, 14, 20, 640, 21, 1, 0, 156, 15, 1, 0, 220, 0, 16, 16, 176, 21, 1, 0, 368, 216
OFFSET
0,5
COMMENTS
a(2p) = 1 for any prime p implies p,p+2 form a twin prime pair. - Kevin J. Gomez, Aug 29 2017
Indices of records > 0 appear to all belong to A116882. - Bill McEachen, Oct 16 2023
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 2000 terms from T. D. Noe)
Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003.
FORMULA
a(n) = A003415(A003415(n)).
a(A000040(n)) = 0; a(A157037(n)) = 1. - Reinhard Zumkeller, Feb 22 2009
MAPLE
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
a:= n-> d(d(n));
seq(a(n), n=0..100); # Alois P. Heinz, Aug 29 2017
MATHEMATICA
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[dn[dn[n]], {n, 100}] (T. D. Noe)
f[n_] := If[ Abs@ n < 2, 0, n*Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; Table[ f[ f[ n]], {n, 81}] (* Robert G. Wilson v, May 12 2012 *)
PROG
(Haskell)
a068346 = a003415 . a003415 -- Reinhard Zumkeller, Nov 10 2013
CROSSREFS
Cf. A003415 (arithmetic derivative of n), A099306 (third arithmetic derivative of n).
Column k=2 of A258651.
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Feb 28 2002
EXTENSIONS
More terms from T. D. Noe, Oct 12 2004
STATUS
approved
The n-th arithmetic derivative of 2^3.
+10
12
8, 12, 16, 32, 80, 176, 368, 752, 1520, 3424, 8592, 20096, 70464, 235072, 705280, 3023616, 13223680, 55540736, 278539264, 1392697344, 9541095424, 58609614848, 410267320320, 3397142953984, 24143851798528, 176071227916288, 1232666139967488, 9523075842834432
OFFSET
0,1
COMMENTS
Conjecture: a strictly increasing sequence. - J. Lowell, Sep 10 2008
The sequence is strictly increasing because (4*n)' = 4*n + 4*n'. - David Radcliffe, Aug 19 2014
8 is the smallest integer that has a nontrivial trajectory (not going to 0 nor reduced to a fixed point as 4) under A003415, but 15 = A090636(1) has 8 as second term in its trajectory. 20 is the next larger such integer with a distinct trajectory, but has two larger predecessors, cf. A090635. - M. F. Hasler, Nov 27 2019
In general, the trajectory of p^(p+1) under A003415 has a common factor p^p, and divided by p^p it gives the trajectory of p under A129283: n -> n + n'. Here we have the case p = 2 (see A129284 for a(n)/2^2), cf. A129151 and A129152 for p = 3 and 5. - M. F. Hasler, Nov 28 2019
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..100
FORMULA
a(n+1) = A003415(a(n)), a(0) = 2^3 = 8.
a(n) = A090636(n+2).
A129251(a(n)) > 0. - Reinhard Zumkeller, Apr 07 2007
a(n) = 4*A129284(n). - M. F. Hasler, Nov 27 2019
MATHEMATICA
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; s = 2^3; Join[{s}, Table[s = dn[s], {28}]] (* T. D. Noe, Mar 07 2013 *)
PROG
(Haskell)
a129150 n = a129150_list !! n
a129150_list = iterate a003415 8 -- Reinhard Zumkeller, Apr 29 2012
(PARI) A129150(n, a=8)={if(n<0, vector(-n, n, if(n>1, a=A003415(a), a)), for(n=1, n, a=A003415(a)); a)} \\ For n<0 return the vector a[0..-n-1]. - M. F. Hasler, Nov 27 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 01 2007
EXTENSIONS
a(21)-a(27) from Paolo P. Lava, Apr 16 2012
STATUS
approved
n''', the third arithmetic derivative of n.
+10
11
0, 0, 0, 0, 4, 0, 0, 0, 32, 1, 0, 0, 80, 0, 5, 16, 176, 0, 7, 0, 48, 1, 0, 0, 112, 1, 12, 27, 176, 0, 0, 0, 368, 6, 0, 32, 96, 0, 7, 80, 156, 0, 0, 0, 240, 32, 7, 0, 608, 6, 16, 44, 96, 0, 216, 80, 272, 1, 0, 0, 272, 0, 9, 24, 2368, 10, 0, 0, 220, 8, 0, 0, 284, 0
OFFSET
0,5
COMMENTS
For prime p, a(p^p) = p^p.
a(A157037(n)) = 0. - Reinhard Zumkeller, Feb 22 2009
REFERENCES
See A003415.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 2000 terms from T. D. Noe)
FORMULA
a(n) = A003415(A003415(A003415(n))).
MATHEMATICA
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[dn[dn[dn[n]]], {n, 100}]
CROSSREFS
Cf. A003415 (arithmetic derivative of n), A068346 (second arithmetic derivative of n), A099307 (least k such that the k-th arithmetic derivative of n is zero).
Column k=3 of A258651.
KEYWORD
nonn
AUTHOR
T. D. Noe, Oct 12 2004
STATUS
approved
Fourth arithmetic derivative of n.
+10
4
0, 0, 0, 0, 4, 0, 0, 0, 80, 0, 0, 0, 176, 0, 1, 32, 368, 0, 1, 0, 112, 0, 0, 0, 240, 0, 16, 27, 368, 0, 0, 0, 752, 5, 0, 80, 272, 0, 1, 176, 220, 0, 0, 0, 608, 80, 1, 0, 1552, 5, 32, 48, 272, 0, 540, 176, 560, 0, 0, 0, 560, 0, 6, 44, 7168, 7, 0, 0, 284, 12, 0
OFFSET
0,5
LINKS
FORMULA
a(n) = A003415^4(n).
MAPLE
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
a:= n-> A(n, 4):
seq(a(n), n=0..70);
CROSSREFS
Column k=4 of A258651.
Cf. A003415.
KEYWORD
nonn,look
AUTHOR
Alois P. Heinz, Jun 06 2015
STATUS
approved
a(n) gives the number of iterations of x -> A003415(x) needed to reach the first number which is either a divisor or multiple of n, but not both at the same time. If no such number can ever be reached, a(n) is 0 (when either n is of the form p^p, or if the iteration would never stop). When the number reached is a divisor of n, a(n) is -1 * iteration count.
+10
4
-1, -1, 0, -1, -2, -1, 2, -3, -2, -1, 9, -1, -4, 23, 1, -1, -4, -1, 5, -2, -2, -1, 2, -3, 24, 0, 18, -1, -2, -1, 6, -5, -2, 85, 7, -1, -4, 21, 10, -1, -2, -1, 35, 53, -4, -1, 2, -5, 44, 18, 34, -1, 2, 21, 4, -3, -2, -1, 16, -1, -6, 21, 1, -5, -2, -1, 7, 85, -2, -1, 4, -1, 23, 55, 5, -4, -2, -1, 4, 9, -2, -1, 42, -3, 42
OFFSET
2,5
COMMENTS
The absolute value of a(n) tells how many columns right from the leftmost column in array A258651 one needs to go at row n, before one (again) finds either a divisor or a multiple of n, with 0's reserved for cases like 4 and 27 where the same value continues forever. If one finds a divisor before a multiple, then the value of a(n) will be negative, otherwise it will be positive.
Question: What is the value of a(91) ?
LINKS
FORMULA
a(A000040(n)) = -1.
a(A051674(n)) = 0.
EXAMPLE
For n = 6, its arithmetic derivative A003415(6) = 5 is neither its divisor nor its multiple, but the second arithmetic derivative A003415(5) = 1 is its divisor, thus a(6) = -2.
For n = 8, its arithmetic derivative A003415(8) = 12 is neither its divisor nor its multiple, but the second arithmetic derivative A003415(12) = 16 is its multiple, thus a(8) = +2.
Numbers reached for n=2..28 (with positions of the form p^p are filled with the same p^p): 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 8592, 1, 1, 410267320320, 32, 1, 1, 1, 240, 7, 1, 1, 48, 1, 410267320320, 27, 9541095424. For example, we have a(12) = 9 and the 9th arithmetic derivative of 12 is A003415^(9)(12) = 8592 = 716*12.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A328383(n) = { my(u=A003415(n), k=1); if(u==n, return(0)); while((n%u) && (u%n), k++; u = A003415(u)); if(u%n, -k, k); };
CROSSREFS
Cf. A051674 (indices of zeros provided for all n >= 2 either a divisor or multiple can be found).
Cf. A256750, A328248, A328384 for similar counts.
KEYWORD
sign,hard,more
AUTHOR
Antti Karttunen, Oct 15 2019
STATUS
approved
If n is of the form p^p, a(n) = 0, otherwise a(n) gives the number of iterations of x -> A003415(x) needed to reach the first number different from n which is either a prime, or whose degree (A051903) differs from the degree of n. If the degree of the final number is <= that of n, then a(n) = -1 * iteration count.
+10
4
-1, -1, -1, 0, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -2, -1, -1, -1, -1, 2, 0, 1, -1, -1, -1, -1, 2, -1, 1, 3, -1, -3, 1, -1, -1, -1, -1, 1, -1, 1, -1, 3, -1, -2, 1, 1, -1, 1, 1, -1, -2, -1, -1, 2, -1, 3, -1, 2, 1, -1, -1, 1, 3, -1, -1, -1, -1, 2, -1, 1, 1, -1, -1, 5, -1, -1, -1, 2, -2, 1, 1, -1, -1, -1, 1, 1, -2, 1
OFFSET
1,21
COMMENTS
The records -1, 0, 1, 2, 3, 5, 8, 10, 11, 13, ... occur at n = 1, 4, 12, 26, 36, 80, 108, 4887, 18688, 22384, ...
LINKS
FORMULA
a(1) = -1 as 0 is here considered having a smaller degree than 1.
a(p) = -1 for all primes.
a(A051674(n)) = 0.
a(A157037(n)) = -1.
a(A328252(n)) = -1.
a(A328320(n)) = -1.
EXAMPLE
For n = 21 = 3*7, A051903(21) = 1, A003415(21) = 10 = 2*5, is of the same degree as A051903(10) = 1, but then A003415(10) = 7, which is a prime, having degree <= of the starting value (as we have A051903(7) <= A051903(21)), thus a(21) = -1 * 2 = -2.
For n = 33 = 3*11, A051903(33) = 1, A003415(33) = 14 = 2*7, is of the same degree, but on the second iteration, A003415(14) = 9 = 3^2, with A051903(9) = 2, which is larger than the initial degree, thus a(33) = +2.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A051903(n) = if((n<=1), n-1, vecmax(factor(n)[, 2]));
A328384(n) = { my(d=A051903(n), u=A003415(n), k=1); if(u==n, return(0)); while(u && (u!=n) && !isprime(u) && A051903(u)==d, k++; n = u; u = A003415(u)); if(A051903(u)<=d, -k, k); };
CROSSREFS
Cf. A328385 (the number found in the iteration).
Cf. A256750, A328248, A328383 for similar counts.
KEYWORD
sign
AUTHOR
Antti Karttunen, Oct 15 2019
STATUS
approved
n-th arithmetic derivative of n.
+10
3
0, 0, 0, 0, 4, 0, 0, 0, 1520, 0, 0, 0, 235072, 0, 0, 705280, 278539264, 0, 0, 0, 226593936, 0, 0, 0, 295266178368, 0, 24143851798528, 27, 10557680820452065280, 0, 0, 0, 2821525007683005301391360, 0, 0, 2821525007683005301391360, 43942858408664114852524638339072
OFFSET
0,5
COMMENTS
a(n) is zero for all prime n.
LINKS
MATHEMATICA
dn[0]=0; dn[1]=0; dn[n_] := Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[Nest[dn, n, n], {n, 50}]
PROG
(Python)
from sympy import factorint
def A185232(n):
for _ in range(n):
if n <= 1: return 0
n = sum((n*e//p for p, e in factorint(n).items()))
return n # Chai Wah Wu, Nov 03 2022
CROSSREFS
Cf. A003415.
Main diagonal of A258651.
KEYWORD
nonn
AUTHOR
STATUS
approved
Fifth arithmetic derivative of n.
+10
3
0, 0, 0, 0, 4, 0, 0, 0, 176, 0, 0, 0, 368, 0, 0, 80, 752, 0, 0, 0, 240, 0, 0, 0, 608, 0, 32, 27, 752, 0, 0, 0, 1520, 1, 0, 176, 560, 0, 0, 368, 284, 0, 0, 0, 1552, 176, 0, 0, 3120, 1, 80, 112, 560, 0, 1188, 368, 1312, 0, 0, 0, 1312, 0, 5, 48, 36864, 1, 0, 0
OFFSET
0,5
LINKS
FORMULA
a(n) = A003415^5(n).
MAPLE
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
a:= n-> A(n, 5):
seq(a(n), n=0..70);
CROSSREFS
Column k=5 of A258651.
Cf. A003415.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 06 2015
STATUS
approved
Sixth arithmetic derivative of n.
+10
3
0, 0, 0, 0, 4, 0, 0, 0, 368, 0, 0, 0, 752, 0, 0, 176, 1520, 0, 0, 0, 608, 0, 0, 0, 1552, 0, 80, 27, 1520, 0, 0, 0, 3424, 0, 0, 368, 1312, 0, 0, 752, 288, 0, 0, 0, 3120, 368, 0, 0, 8144, 0, 176, 240, 1312, 0, 2484, 752, 3312, 0, 0, 0, 3312, 0, 1, 112, 245760, 0
OFFSET
0,5
LINKS
FORMULA
a(n) = A003415^6(n).
MAPLE
d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
a:= n-> A(n, 6):
seq(a(n), n=0..70);
CROSSREFS
Column k=6 of A258651.
Cf. A003415.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 06 2015
STATUS
approved

Search completed in 0.012 seconds