OFFSET
0,3
COMMENTS
(n-1)-st elementary symmetric functions of first n primes; see Mathematica section. - Clark Kimberling, Dec 29 2011
Denominators of the harmonic mean of the first n primes; A250130 gives the numerators. - Colin Barker, Nov 14 2014
Let Pn(n) = A002110 denote the primorial function. The average number of distinct prime factors <= prime(n) in the natural numbers up to Pn(n) is equal to Sum_{i = 1..n} 1/prime(i). - Jamie Morken, Sep 17 2018
Conjecture: All terms are squarefree numbers. - Nicolas Bělohoubek, Apr 13 2022
The above conjecture would imply that for n > 0, gcd(a(n), A369651(n)) = 1. See corollary 2 on the page 4 of Ufnarovski-Åhlander paper. - Antti Karttunen, Jan 31 2024
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, Sect. 2.2.
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Sect. VII.28.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..350 (terms n = 1..100 from T. D. Noe)
Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003.
FORMULA
Limit_{n->oo} (Sum_{p <= n} 1/p - log log n) = 0.2614972... = A077761.
a(n) = (Product_{i=1..n} prime(i))*(Sum_{i=1..n} 1/prime(i)). - Benoit Cloitre, Jan 30 2002
(n+1)-st elementary symmetric function of the first n primes.
From Antti Karttunen, Jan 31 2024 and Feb 08 2024: (Start)
(End)
EXAMPLE
0/1, 1/2, 5/6, 31/30, 247/210, 2927/2310, 40361/30030, 716167/510510, 14117683/9699690, ...
MAPLE
h:= n-> add(1/(ithprime(i)), i=1..n);
t1:=[seq(h(n), n=0..50)];
t1a:=map(numer, t1); # A024451
t1b:=map(denom, t1); # A002110 - N. J. A. Sloane, Apr 25 2014
MATHEMATICA
a[n_] := Numerator @ Sum[1/Prime[i], {i, n}]; Array[a, 18] (* Jean-François Alcover, Apr 11 2011 *)
f[k_] := Prime[k]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}] (* A024451 *)
(* Clark Kimberling, Dec 29 2011 *)
Numerator[Accumulate[1/Prime[Range[20]]]] (* Harvey P. Dale, Apr 11 2012 *)
PROG
(Magma) [ Numerator(&+[ NthPrime(k)^-1: k in [1..n]]): n in [1..18] ]; // Bruno Berselli, Apr 11 2011
(PARI) a(n) = numerator(sum(i=1, n, 1/prime(i))); \\ Michel Marcus, Sep 18 2018
(Python)
from sympy import prime
from fractions import Fraction
def a(n): return sum(Fraction(1, prime(k)) for k in range(1, n+1)).numerator
print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 12 2021
(Python)
from math import prod
from sympy import prime
def A024451(n):
q = prod(plist:=tuple(prime(i) for i in range(1, n+1)))
return sum(q//p for p in plist) # Chai Wah Wu, Nov 03 2022
CROSSREFS
KEYWORD
nonn,frac,easy,nice
AUTHOR
EXTENSIONS
a(0)=0 prepended by Alois P. Heinz, Jun 26 2015
STATUS
approved