[go: up one dir, main page]

login
A109628
Numbers k such that the numerator of Sum_{i=1..k} 1/prime(i), in reduced form, is prime.
7
2, 3, 5, 6, 18, 19, 22, 47, 57, 58, 63, 70, 73, 112, 632, 1382, 4621
OFFSET
1,1
COMMENTS
Terms <= 112 correspond to certified primes.
Numbers k such that the arithmetic derivative of the k-th primorial, A024451(k) [= A003415(A002110(k))] is prime. - Antti Karttunen, Jan 09 2024
EXAMPLE
Sum_{i=1..6} 1/prime(i) = 40361/30030 and 40361 is prime, hence 6 is a term.
MATHEMATICA
s = 0; Do[s += 1/Prime[n]; k = Numerator[s]; If[PrimeQ[k], Print[n]], {n, 1, 1500}]
Position[Accumulate[1/Prime[Range[120]]], _?(PrimeQ[ Numerator[ #]]&)] //Flatten (* To generate terms greater than 120, increase the Range constant, but the program may take much longer to run. *) (* Harvey P. Dale, Jan 01 2019 *)
CROSSREFS
Positions of primes in A024451.
Sequence in context: A126250 A293027 A276353 * A192367 A227230 A102977
KEYWORD
hard,more,nonn
AUTHOR
Ryan Propper, Aug 02 2005
EXTENSIONS
a(17) from Michael S. Branicky, Sep 16 2024
STATUS
approved