[go: up one dir, main page]

login
A077761
Decimal expansion of Mertens's constant, which is the limit of (Sum_{i=1..k} 1/prime(i)) - log(log(prime(k))) as k goes to infinity, where prime(i) is the i-th prime number.
84
2, 6, 1, 4, 9, 7, 2, 1, 2, 8, 4, 7, 6, 4, 2, 7, 8, 3, 7, 5, 5, 4, 2, 6, 8, 3, 8, 6, 0, 8, 6, 9, 5, 8, 5, 9, 0, 5, 1, 5, 6, 6, 6, 4, 8, 2, 6, 1, 1, 9, 9, 2, 0, 6, 1, 9, 2, 0, 6, 4, 2, 1, 3, 9, 2, 4, 9, 2, 4, 5, 1, 0, 8, 9, 7, 3, 6, 8, 2, 0, 9, 7, 1, 4, 1, 4, 2, 6, 3, 1, 4, 3, 4, 2, 4, 6, 6, 5, 1, 0, 5, 1, 6, 1, 7
OFFSET
0,1
COMMENTS
Graham, Knuth & Patashnik incorrectly give this constant as 0.261972128. - Robert G. Wilson v, Dec 02 2005 [This was corrected in the second edition (1994). - T. D. Noe, Mar 11 2017]
Also the average deviation of the number of distinct prime factors: sum_{n < x} omega(n) = x log log x + B_1 x + O(x) where B_1 is this constant, see (e.g.) Hardy & Wright. - Charles R Greathouse IV, Mar 05 2021
Named after the Polish mathematician Franz Mertens (1840-1927). Sometimes called Meissel-Mertens constant, after Mertens and the German astronomer Ernst Meissel (1826-1895). - Amiram Eldar, Jun 16 2021
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2004, pp. 94-98
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, A Foundation For Computer Science, Addison-Wesley, Reading, MA, 1989, p. 23.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed. (1975). Oxford, England: Oxford University Press. See 22.10, "The number of prime factors of n".
József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section VII.28, p. 257.
LINKS
Christian Axler, New estimates for some functions defined over primes, Integers, Vol. 18 (2018), Article #A52.
Henri Cohen, High precision computation of Hardy-Littlewood constants, preprint, 1998. - From N. J. A. Sloane, Jan 26 2013
Pierre Dusart, Explicit estimates of some functions over primes, The Ramanujan Journal, Vol. 45 (2018), pp. 227-251.
Pierre Dusart, On the divergence of the sum of prime reciprocals, WSEAS Transactions on Math. (2023) Vol.22, 508-513.
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 203.
Philippe Flajolet and Ilan Vardi, Zeta function expansions of some classical constants.
Pieter Moree, Mathematical constants.
Dimbinaina Ralaivaosaona and Faratiana Brice Razakarinoro, An explicit upper bound for Siegel zeros of imaginary quadratic fields, arXiv:2001.05782 [math.NT], 2020.
Xavier Gourdon and Pascal Sebah, Constants from number theory
Jonathan Sondow and Kieren MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdos-Moser equation, Amer. Math. Monthly, Vol. 124, No. 3 (2017), pp. 232-240; also on arXiv preprint, arXiv:math/1812.06566 [math.NT], 2018.
Mark B. Villarino, Mertens' proof of Mertens' Theorem, arXiv:math/0504289 [math.HO], 2005.
Eric Weisstein's World of Mathematics, Mertens Constant.
Eric Weisstein's World of Mathematics, Prime Zeta Function.
Eric Weisstein's World of Mathematics, Harmonic Series of Primes.
Marek Wójtowicz, Another proof on the existence of Mertens's constant, Proc. Japan Acad. Ser. A Math. Sci., Vol. 87, No. 2 (2011), pp. 22-23.
FORMULA
Equals A001620 - Sum_{n>=2} zeta_prime(n)/n where the zeta prime sequence is A085548, A085541, A085964, A085965, A085966 etc. [Sebah and Gourdon] - R. J. Mathar, Apr 29 2006
Equals gamma + Sum_{p prime} (log(1-1/p) + 1/p), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2021
EXAMPLE
0.26149721284764278375542683860869585905156664826119920619206421392...
MATHEMATICA
$MaxExtraPrecision = 400; RealDigits[ N[EulerGamma + NSum[(MoebiusMu[m]/m)*Log[N[Zeta[m], 120]], {m, 2, 1000}, Method -> "EulerMaclaurin", AccuracyGoal -> 120, NSumTerms -> 1000, PrecisionGoal -> 120, WorkingPrecision -> 120] , 120]][[1, 1 ;; 105]]
(* or, from version 7 up: *) digits = 105; M = EulerGamma - NSum[ PrimeZetaP[n] / n, {n, 2, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> 3*digits]; RealDigits[M, 10, digits] // First (* Jean-François Alcover, Mar 16 2011, updated Sep 01 2015 *)
CROSSREFS
Cf. A001620.
Sequence in context: A154584 A129677 A324033 * A220406 A372261 A220794
KEYWORD
cons,nonn
AUTHOR
T. D. Noe, Nov 14 2002
STATUS
approved