[go: up one dir, main page]

login
Search: a206399 -id:a206399
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of points on surface of tetrahedron; coordination sequence for sodalite net (equals 2*n^2+2 for n > 0).
(Formerly M3380)
+0
84
1, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234
OFFSET
0,2
COMMENTS
Number of n-matchings of the wheel graph W_{2n} (n > 0). Example: a(2)=10 because in the wheel W_4 (rectangle ABCD and spokes OA,OB,OC,OD) we have the 2-matchings: (AB, OC), (AB, OD), (BC, OA), (BC,OD), (CD,OA), (CD,OB), (DA,OB), (DA,OC), (AB,CD) and (BC,DA). - Emeric Deutsch, Dec 25 2004
For n > 0 a(n) is the difference of two tetrahedral (or pyramidal) numbers: binomial(n+3, 3) = (n+1)(n+2)(n+3)/6. a(n) = A000292(n+1) - A000292(n-3) = (n+1)(n+2)(n+3)/6 - (n-3)(n-2)(n-1)/6. - Alexander Adamchuk, May 20 2006; updated by Peter Munn, Aug 25 2017 due to changed offset in A000292
Equals binomial transform of [1, 3, 3, 1, -1, 1, -1, 1, -1, 1, ...]. Binomial transform of A005893 = nonzero terms of A053545: (1, 5, 19, 63, 191, ...). - Gary W. Adamson, Apr 28 2008
Disregarding the terms < 10, the sums of four consecutive triangular numbers (A000217). - Rick L. Shepherd, Sep 30 2009
Use a set of n concentric circles where n >= 0 to divide the plane. a(n) is the maximal number of regions after the 2nd division. - Frank M Jackson, Sep 07 2011
Euler transform of length 4 sequence [4, 0, 0, -1]. - Michael Somos, May 14 2014
Also, growth series for affine Coxeter group (or affine Weyl group) A_3 or D_3. - N. J. A. Sloane, Jan 11 2016
For n > 2 the generalized Pell's equation x^2 - 2*(a(n) - 2)y^2 = (a(n) - 4)^2 has a finite number of positive integer solutions. - Muniru A Asiru, Apr 19 2016
Union of A188896, A277449, {1,4}. - Muniru A Asiru, Nov 25 2016
Interleaving of A008527 and A108099. - Bruce J. Nicholson, Oct 14 2019
REFERENCES
N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #28.
R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
J. M. Grau, C. Miguel, and A. M. Oller-Marcén, Generalized Quaternion Rings over Z/nZ for an odd n, arXiv:1706.04760 [math.RA], 2017. See Theorem 1, p. 10.
Milan Janjić, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010), Article 10.7.8.
M. O'Keeffe, N-dimensional diamond, sodalite and rare sphere packings, Acta Cryst., A 47 (1991), 749-753.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Reticular Chemistry Structure Resource, sod.
Aditya Sivakumar and Dmitri Tymoczko, Intuitive Musical Homotopy, 2018.
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558. DOI: 10.1021/ic00220a025.
FORMULA
G.f.: (1 - x^4)/(1-x)^4.
a(n) = A071619(n-1) + A071619(n) + A071619(n+1), n > 0. - Ralf Stephan, Apr 26 2003
a(n) = binomial(n+3, 3) - binomial(n-1, 3) for n >= 1. - Mitch Harris, Jan 08 2008
a(n) = (n+1)^2 + (n-1)^2. - Benjamin Abramowitz, Apr 14 2009
a(n) = A000217(n-2) + A000217(n-1) + A000217(n) + A000217(n+1) for n >= 2. - Rick L. Shepherd, Sep 30 2009
a(n) = 2*n^2 - 0^n + 2. - Vincenzo Librandi, Sep 27 2011
a(0)=1, a(1)=4, a(2)=10, a(3)=20, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 26 2012
a(n) = A228643(n+1,2) for n > 0. - Reinhard Zumkeller, Aug 29 2013
a(n) = a(-n) for all n in Z. - Michael Somos, May 14 2014
For n >= 2: a(n) = a(n-1) + 4*n - 2. - Bob Selcoe, Mar 22 2016
E.g.f.: -1 + 2*(1 + x + x^2)*exp(x). - Ilya Gutkovskiy, Apr 19 2016
a(n) = 2*A002522(n), n>0. - R. J. Mathar, May 30 2022
From Amiram Eldar, Sep 16 2022: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi)*Pi + 3)/4.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi)*Pi + 3)/4. (End)
Empirical: Integral_{u=-oo..+oo} sigmoid(u)*log(sigmoid(n * u)) du = -Pi^2*a(n) / (24*n), where sigmoid(x) = 1/(1+exp(-x)). Also works for non-integer n>0. - Carlo Wood, Dec 04 2023
Let P(k,n) be the n-th k-gonal number. Then P(a(k),n) = (k*n-k+1)^2 + (k-1)^2*(n-1). - Charlie Marion, May 15 2024
EXAMPLE
G.f. = 1 + 4*x + 10*x^2 + 20*x^3 + 34*x^4 + 52*x^5 + 74*x^6 + 100*x^7 + ...
MAPLE
A005893:=-(z+1)*(1+z^2)/(z-1)^3; # Simon Plouffe in his 1992 dissertation
MATHEMATICA
Join[{1}, Table[2*(n + 1)^2 + 2, {n, 0, 200}]] (* Vladimir Joseph Stephan Orlovsky, Jul 10 2011 *)
Join[{1}, LinearRecurrence[{3, -3, 1}, {4, 10, 20}, 50]] (* Harvey P. Dale, Feb 26 2012 *)
a[ n_] := SeriesCoefficient[ (1 - x^4) / (1 - x)^4, {x, 0, Abs@n}]; (* Michael Somos, May 14 2014 *)
a[ n_] := 2 n^2 + 2 - Boole[n == 0]; (* Michael Somos, May 14 2014 *)
PROG
(Magma) [2*n^2-0^n+2: n in [0..60]]; // Vincenzo Librandi, Sep 27 2011
(PARI) a(n)=2*n^2-0^n+2 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. similar sequences listed in A255843.
The growth series for the affine Coxeter groups D_3 through D_12 are A005893 and A266759-A266767.
For partial sums see A005894.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
KEYWORD
nonn,easy,nice
STATUS
approved
a(0) = 1, a(n) = 42*n^2 + 2 for n>0.
+0
2
1, 44, 170, 380, 674, 1052, 1514, 2060, 2690, 3404, 4202, 5084, 6050, 7100, 8234, 9452, 10754, 12140, 13610, 15164, 16802, 18524, 20330, 22220, 24194, 26252, 28394, 30620, 32930, 35324, 37802, 40364, 43010, 45740, 48554, 51452, 54434, 57500, 60650, 63884
OFFSET
0,2
COMMENTS
First bisection of A007899. - Bruno Berselli, Feb 07 2012
FORMULA
G.f.: (1+x)*(1+40*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*42+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(21)/84*Pi*coth(Pi/sqrt(21)) = 1.0379904347... - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, 42 Range[39]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
Join[{1}, LinearRecurrence[{3, -3, 1}, {44, 170, 380}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)
PROG
(Magma) [1] cat [42*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
CROSSREFS
Cf. A206399.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
a(0) = 1, a(n) = 40*n^2 + 2 for n>0.
+0
1
1, 42, 162, 362, 642, 1002, 1442, 1962, 2562, 3242, 4002, 4842, 5762, 6762, 7842, 9002, 10242, 11562, 12962, 14442, 16002, 17642, 19362, 21162, 23042, 25002, 27042, 29162, 31362, 33642, 36002, 38442, 40962, 43562, 46242, 49002, 51842, 54762, 57762, 60842
OFFSET
0,2
COMMENTS
First bisection of A005901. - Bruno Berselli, Feb 07 2012
FORMULA
G.f.: (1+x)*(1+38*x+x^2)/(1-x)^3; a(n) = A008253(4n). - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*40+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(5)/40*Pi*coth(Pi*sqrt(5)/10) = 1.03983104279172.. - R. J. Mathar, May 07 2024
a(n) = 2*A158493(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A195317(n)+A195317(n+1) = 2+10*A016742(n), n>0. - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, 40 Range[39]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
Join[{1}, LinearRecurrence[{3, -3, 1}, {42, 162, 362}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)
PROG
(Magma) [1] cat [40*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
CROSSREFS
Cf. A206399.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
a(0) = 1, a(n) = 32*n^2 + 2 for n > 0.
+0
5
1, 34, 130, 290, 514, 802, 1154, 1570, 2050, 2594, 3202, 3874, 4610, 5410, 6274, 7202, 8194, 9250, 10370, 11554, 12802, 14114, 15490, 16930, 18434, 20002, 21634, 23330, 25090, 26914, 28802, 30754, 32770, 34850, 36994, 39202, 41474, 43810, 46210, 48674, 51202
OFFSET
0,2
COMMENTS
From Omar E. Pol, Apr 21 2021: (Start)
Sequence found by reading the line segment from 1 to 34 together with the line from 34, in the direction 34, 130, ..., in the rectangular spiral whose vertices are the generalized 18-gonal numbers A274979.
The spiral begins as follows:
46_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _18
| |
| 0 |
| |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
| 1 15
|
51
(End)
FORMULA
G.f.: (1+x)*(1+30*x+x^2)/(1-x)^3. [Bruno Berselli, Feb 07 2012]
a(n) = A005893(4n) = A008527(2n); a(n+1) = A108100(2n+2). [Bruno Berselli, Feb 07 2012]
E.g.f.: (x*(x+1)*32+2)*e^x-1. - Gopinath A. R., Feb 14 2012
a(n) = (4n+1)^2+(4n-1)^2 for n>0. [Bruno Berselli, Jun 24 2014]
a(n) = A244082(n) + 2, n >= 1. - Omar E. Pol, Apr 21 2021
Sum_{n>=0} 1/a(n) = 3/4 + Pi/16*coth(Pi/4) = 1.04940725316131.. - R. J. Mathar, May 07 2024
a(n) = 2*A108211(n). - R. J. Mathar, May 07 2024
a(n) = A195315(n)+A195315(n+1). - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, 32 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
CoefficientList[Series[(1 + x) (1 + 30 x + x^2)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 25 2014 *)
CROSSREFS
Cf. A274979 (generalized 18-gonal numbers).
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
a(0) = 1, a(n) = 31*n^2 + 2 for n>0.
+0
1
1, 33, 126, 281, 498, 777, 1118, 1521, 1986, 2513, 3102, 3753, 4466, 5241, 6078, 6977, 7938, 8961, 10046, 11193, 12402, 13673, 15006, 16401, 17858, 19377, 20958, 22601, 24306, 26073, 27902, 29793, 31746, 33761, 35838, 37977, 40178, 42441, 44766, 47153, 49602
OFFSET
0,2
FORMULA
G.f.: (1+x)*(1+29*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*31+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(62)/124 *Pi*coth(Pi*sqrt(62)/31) = 1.05093832062... - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, 31 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
Join[{1}, LinearRecurrence[{3, -3, 1}, {33, 126, 281}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)
PROG
(Magma) [1] cat [31*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
CROSSREFS
Cf. A206399.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
a(0) = 1, a(n) = 29*n^2 + 2 for n>0.
+0
1
1, 31, 118, 263, 466, 727, 1046, 1423, 1858, 2351, 2902, 3511, 4178, 4903, 5686, 6527, 7426, 8383, 9398, 10471, 11602, 12791, 14038, 15343, 16706, 18127, 19606, 21143, 22738, 24391, 26102, 27871, 29698, 31583, 33526, 35527, 37586, 39703, 41878, 44111, 46402
OFFSET
0,2
FORMULA
G.f.: (1+x)*(1+27*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*29+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 +sqrt(58)/116*Pi*coth(Pi*sqrt(58)/29) = 1.0543041946866.. - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, 29 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
Join[{1}, LinearRecurrence[{3, -3, 1}, {31, 118, 263}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)
PROG
(PARI) a(n)=polcoeff((x*(x+1)*29+2)*exp(x+O(x^(n+1)))-1, n)*n! /* to illustrate the e.g.f. */
(PARI) A010019(n)=29*n^2+2-!n \\ M. F. Hasler, Feb 14 2012
(Magma) [1] cat [29*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
CROSSREFS
Cf. similar sequences listed in A206399.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
a(0) = 1, a(n) = 28*n^2 + 2 for n>0.
+0
1
1, 30, 114, 254, 450, 702, 1010, 1374, 1794, 2270, 2802, 3390, 4034, 4734, 5490, 6302, 7170, 8094, 9074, 10110, 11202, 12350, 13554, 14814, 16130, 17502, 18930, 20414, 21954, 23550, 25202, 26910, 28674, 30494, 32370, 34302, 36290, 38334, 40434, 42590, 44802
OFFSET
0,2
COMMENTS
First bisection of A005919. - Bruno Berselli, Feb 07 2012
a(n) = the second level of difference between the sum of the terms in the n+1 X n+1 matrices and those in the n X n matrices starting at n=1 for an array constructed by using the terms in A016813 as the antidiagonals; the first few antidiagonals are 1; 5,9; 13,17,21; 25,29,33,37. - J. M. Bergot, Jul 05 2013
[More formally: (sum[m(n+1),j {j=0..n+1}]+sum[m(i,n+1) {i=0..n}]) - (sum[m(n,j) {j=0...n}] + sum[m(i,n) {i=0..n-1}])=a(n)]
[The first five rows begin: 1,9,21,37,57; 5,17,33,53,77; 13,29,49,73,101;25,45,69,97,129; 41,65,93,125,161]
FORMULA
G.f.: (1+x)*(1+26*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*28+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(14)/56*Pi*coth(Pi/sqrt 14) = 1.05615979263340... - R. J. Mathar, May 07 2024
a(n) = 2*A158482(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A195314(n)+A195314(n+1). - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, 28 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
LinearRecurrence[{3, -3, 1}, {1, 30, 114, 254}, 40] (* Robert G. Wilson v, Jul 06 2013 *)
CROSSREFS
Cf. A206399.
KEYWORD
nonn,easy
STATUS
approved
a(0) = 1, a(n) = 25*n^2 + 2 for n > 0.
+0
1
1, 27, 102, 227, 402, 627, 902, 1227, 1602, 2027, 2502, 3027, 3602, 4227, 4902, 5627, 6402, 7227, 8102, 9027, 10002, 11027, 12102, 13227, 14402, 15627, 16902, 18227, 19602, 21027, 22502, 24027, 25602, 27227, 28902, 30627, 32402, 34227, 36102, 38027, 40002
OFFSET
0,2
COMMENTS
Subsequence of A160842. - Bruno Berselli, Feb 06 2012
The identity (25*n^2 + 1)^2 - (25*n^2 + 2)*(5*n)^2 = 1 can be written as (A016850(n+1) + 1)^2 - a(n+1)*A008587(n+1)^2 = 1. - Vincenzo Librandi, Feb 08 2012
FORMULA
G.f.: (1+x)*(1 + 23*x + x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*25 + 2)*e^x - 1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) =3/4+sqrt(2)/20*Pi*coth(Pi*sqrt(2)/5) = 1.062575323280590.. - R. J. Mathar, May 07 2024
a(n) = A262221(n)+A262221(n+1). - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, 25 Range[40]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
Join[{1}, LinearRecurrence[{3, -3, 1}, {27, 102, 227}, 50]] (* Vincenzo Librandi, Feb 08 2012 *)
PROG
(PARI) A010015(n)=25*n^2+2-!n \\ M. F. Hasler, Feb 14 2012
CROSSREFS
Cf. A206399.
KEYWORD
nonn,easy
STATUS
approved
a(0) = 1, a(n) = 24*n^2 + 2 for n>0.
+0
12
1, 26, 98, 218, 386, 602, 866, 1178, 1538, 1946, 2402, 2906, 3458, 4058, 4706, 5402, 6146, 6938, 7778, 8666, 9602, 10586, 11618, 12698, 13826, 15002, 16226, 17498, 18818, 20186, 21602, 23066, 24578, 26138, 27746, 29402, 31106, 32858, 34658, 36506, 38402, 40346
OFFSET
0,2
COMMENTS
Number of points of L_infinity norm n in the simple cubic lattice Z^3. - N. J. A. Sloane, Apr 15 2008
Numbers of cubes needed to completely "cover" another cube. - Xavier Acloque, Oct 20 2003
First bisection of A005897. After 1, all terms are in A000408. - Bruno Berselli, Feb 06 2012
FORMULA
a(n) = (2*n+1)^3 - (2*n-1)^3 for n >= 1. - Xavier Acloque, Oct 20 2003
G.f.: (1+x)*(1+22*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
a(n) = (2*n-1)^2 + (2*n+1)^2 + (4*n)^2 for n>0. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*24+2)*exp(x)-1. - Gopinath A. R., Feb 14 2012
a(n) = A005899(n) + A195322(n), n > 0. - R. J. Cano, Sep 29 2015
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(3)/24*Pi*coth(Pi*sqrt(3)/6) = 1.065052868574... - R. J. Mathar, May 07 2024
a(n) = 2*A158480(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069190(n)+A069190(n+1). - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, 24 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
PROG
(PARI) a(n) = if (n==0, 1, 24*n^2 + 2);
vector(40, n, a(n-1)) \\ Altug Alkan, Sep 29 2015
CROSSREFS
Cf. A206399.
KEYWORD
nonn,easy
EXTENSIONS
More terms from Xavier Acloque, Oct 20 2003
STATUS
approved
a(0) = 1, a(n) = 23*n^2 + 2 for n>0.
+0
1
1, 25, 94, 209, 370, 577, 830, 1129, 1474, 1865, 2302, 2785, 3314, 3889, 4510, 5177, 5890, 6649, 7454, 8305, 9202, 10145, 11134, 12169, 13250, 14377, 15550, 16769, 18034, 19345, 20702, 22105, 23554, 25049, 26590, 28177, 29810, 31489, 33214, 34985, 36802, 38665
OFFSET
0,2
FORMULA
G.f.: (1+x)*(1+21*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*23+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(46)/92*Pi*coth( Pi*sqrt(46)/23) = 1.0677349581... - R. J. Mathar, May 07 2024
a(n) = A069174(n)+A069174(n+1). - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, 23 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
CROSSREFS
Cf. A206399.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Search completed in 0.020 seconds