[go: up one dir, main page]

login
Search: a179951 -id:a179951
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sums of two distinct powers of 2.
+10
73
3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 33, 34, 36, 40, 48, 65, 66, 68, 72, 80, 96, 129, 130, 132, 136, 144, 160, 192, 257, 258, 260, 264, 272, 288, 320, 384, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2049, 2050, 2052, 2056, 2064, 2080, 2112, 2176, 2304, 2560, 3072
OFFSET
1,1
COMMENTS
Appears to give all k such that 8 is the highest power of 2 dividing A005148(k). - Benoit Cloitre, Jun 22 2002
Seen as a triangle read by rows, T(n,k) = 2^(k-1) + 2^n, 1 <= k <= n, the sum of the n-th row equals A087323(n). - Reinhard Zumkeller, Jun 24 2009
Numbers whose base-2 sum of digits is 2. - Tom Edgar, Aug 31 2013
All odd terms are A000051. - Robert G. Wilson v, Jan 03 2014
A239708 holds the subsequence of terms m such that m - 1 is prime. - Hieronymus Fischer, Apr 20 2014
LINKS
T. D. Noe and Hieronymus Fischer, Table of n, a(n) for n = 1..10000 [terms 1..1000 from T. D. Noe]
Michael Beeler, R. William Gosper, and Richard Schroeppel, HAKMEM, MIT Artificial Intelligence Laboratory report AIM-239, February 1972. Item 175 page 81 by Gosper for iterating. Also HTML transcription.
FORMULA
a(n) = 2^trinv(n-1) + 2^((n-1)-((trinv(n-1)*(trinv(n-1)-1))/2)), i.e., 2^A002024(n)+2^A002262(n-1). - Antti Karttunen
a(n) = A059268(n-1) + A140513(n-1). A000120(a(n)) = 2. Complement of A161989. A151774(a(n)) = 1. - Reinhard Zumkeller, Jun 24 2009
A073267(a(n)) = 2. - Reinhard Zumkeller, Mar 07 2012
Start with A000051. If n is in sequence, then so is 2n. - Ralf Stephan, Aug 16 2013
a(n) = A057168(a(n-1)) for n>1 and a(1) = 3. - Marc LeBrun, Jan 01 2014
From Hieronymus Fischer, Apr 20 2014: (Start)
Formulas for a general parameter b according to a(n) = b^i + b^j, i>j>=0; b = 2 for this sequence.
a(n) = b^i + b^j, where i = floor((sqrt(8n - 1) + 1)/2), j = n - 1 - i*(i - 1)/2 [for a Smalltalk implementation see Prog section, method distinctPowersOf: b (2 versions)].
a(A000217(n)) = (b + 1)*b^(n-1) = b^n + b^(n-1).
a(A000217(n)+1) = 1 + b^(n+1).
a(n + 1 + floor((sqrt(8n - 1) + 1)/2)) = b*a(n).
a(n + 1 + floor(log_b(a(n)))) = b*a(n).
a(n + 1) = b^2/(b+1) * a(n) + 1, if n is a triangular number (s. A000217).
a(n + 1) = b*a(n) + (1-b)* b^floor((sqrt(8n - 1) + 1)/2), if n is not a triangular number.
The next term can also be calculated without using the index n. Let m be a term and i = floor(log_b(m)), then:
a(n + 1) = b*m + (1-b)* b^i, if floor(log_b(m/(b+1))) + 1 < i,
a(n + 1) = b^2/(b+1) * m + 1, if floor(log_b(m/(b+1))) + 1 = i.
Partial sum:
Sum_{k=1..n} a(k) = (((b-1)*(j+1)+i-1)*b^(i-j) + b)*b^j - i)/(b-1), where i = floor((sqrt(8n - 1) + 1)/2), j = n - 1 - i*(i - 1)/2.
Inverse:
For each sequence term m, the index n such that a(n) = m is determined by n := i*(i-1)/2 + j + 1, where i := floor(log_b(m)), j := floor(log_b(m - b^floor(log_b(m)))) [for a Smalltalk implementation see Prog section, method invertedDistinctPowersOf: b].
Inequalities:
a(n) <= (b+1)/b * b^floor(sqrt(2n)+1/2), equality holds for triangular numbers.
a(n) > b^floor(sqrt(2n)+1/2).
a(n) < b^sqrt(2n)*sqrt(b).
a(n) > b^sqrt(2n)/sqrt(b).
Asymptotic behavior:
lim sup a(n)/b^sqrt(2n) = sqrt(b).
lim inf a(n)/b^sqrt(2n) = 1/sqrt(b).
lim sup a(n)/b^(floor(sqrt(2n))) = b.
lim inf a(n)/b^(floor(sqrt(2n))) = 1.
lim sup a(n)/b^(floor(sqrt(2n)+1/2)) = (b+1)/b.
lim inf a(n)/b^(floor(sqrt(2n)+1/2)) = 1.
(End)
Sum_{n>=1} 1/a(n) = A179951. - Amiram Eldar, Oct 06 2020
EXAMPLE
From Hieronymus Fischer, Apr 27 2014: (Start)
a(1) = 3, since 2 = 2^1 + 2^0.
a(5) = 10, since 10 = 2^3 + 2^1.
a(10^2) = 16640
a(10^3) = 35184372089344
a(10^4) = 2788273714550169769618891533295908724670464 = 2.788273714550...*10^42
a(10^5) = 3.6341936214780344527466190...*10^134
a(10^6) = 4.5332938264998904048012398...*10^425
a(10^7) = 1.6074616084721302346802429...*10^1346
a(10^8) = 1.4662184497310967196301632...*10^4257
a(10^9) = 2.3037539289782230932863807...*10^13462
a(10^10) = 9.1836811272250798973464436...*10^42571
(End)
MAPLE
a:= n-> (i-> 2^i+2^(n-1-i*(i-1)/2))(floor((sqrt(8*n-1)+1)/2)):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 01 2022
MATHEMATICA
Select[ Range[ 1056 ], (Count[ IntegerDigits[ #, 2 ], 1 ]==2)& ]
Union[Total/@Subsets[2^Range[0, 10], {2}]] (* Harvey P. Dale, Mar 04 2012 *)
PROG
(PARI) for(m=1, 9, for(n=0, m-1, print1(2^m+2^n", "))) \\ Charles R Greathouse IV, Sep 09 2011
(PARI) is(n)=hammingweight(n)==2 \\ Charles R Greathouse IV, Mar 03 2014
(PARI) for(n=0, 10^5, if(hammingweight(n)==2, print1(n, ", "))); \\ Joerg Arndt, Mar 04 2014
(Haskell)
a018900 n = a018900_list !! (n-1)
a018900_list = elemIndices 2 a073267_list -- Reinhard Zumkeller, Mar 07 2012
(C)
unsigned hakmem175(unsigned x) {
unsigned s, o, r;
s = x & -x; r = x + s;
o = x ^ r; o = (o >> 2) / s;
return r | o;
}
unsigned A018900(int n) {
if (n == 1) return 3;
return hakmem175(A018900(n - 1));
} // Peter Luschny, Jan 01 2014
(Smalltalk)
distinctPowersOf: b
"Version 1: Answers the n-th number of the form b^i + b^j, i>j>=0, where n is the receiver.
b > 1 (b = 2, for this sequence).
Usage: n distinctPowersOf: 2
Answer: a(n)"
| n i j |
n := self.
i := (8*n - 1) sqrtTruncated + 1 // 2.
j := n - (i*(i - 1)/2) - 1.
^(b raisedToInteger: i) + (b raisedToInteger: j)
[by Hieronymus Fischer, Apr 20 2014]
------------
(Smalltalk)
distinctPowersOf: b
"Version 2: Answers an array which holds the first n numbers of the form b^i + b^j, i>j>=0, where n is the receiver. b > 1 (b = 2, for this sequence).
Usage: n distinctPowersOf: 2
Answer: #(3 5 6 9 10 12 ...) [first n terms]"
| k p q terms |
terms := OrderedCollection new.
k := 0.
p := b.
q := 1.
[k < self] whileTrue:
[[q < p and: [k < self]] whileTrue:
[k := k + 1.
terms add: p + q.
q := b * q].
p := b * p.
q := 1].
^terms as Array
[by Hieronymus Fischer, Apr 20 2014]
------------
(Smalltalk)
floorDistinctPowersOf: b
"Answers an array which holds all the numbers b^i + b^j < n, i>j>=0, where n is the receiver.
b > 1 (b = 2, for this sequence).
Usage: n floorDistinctPowersOf: 2
Answer: #(3 5 6 9 10 12 ...) [all terms < n]"
| a n p q terms |
terms := OrderedCollection new.
n := self.
p := b.
q := 1.
a := p + q.
[a < n] whileTrue:
[[q < p and: [a < n]] whileTrue:
[terms add: a.
q := b * q.
a := p + q].
p := b * p.
q := 1.
a := p + q].
^terms as Array
[by Hieronymus Fischer, Apr 20 2014]
------------
(Smalltalk)
invertedDistinctPowersOf: b
"Given a number m which is a distinct power of b, this method answers the index n such that there are uniquely defined i>j>=0 for which b^i + b^j = m, where m is the receiver; b > 1 (b = 2, for this sequence).
Usage: m invertedDistinctPowersOf: 2
Answer: n such that a(n) = m, or, if no such n exists, min (k | a(k) >= m)"
| n i j k m |
m := self.
i := m integerFloorLog: b.
j := m - (b raisedToInteger: i) integerFloorLog: b.
n := i * (i - 1) / 2 + 1 + j.
^n
[by Hieronymus Fischer, Apr 20 2014]
(Python)
print([n for n in range(1, 3001) if bin(n)[2:].count("1")==2]) # Indranil Ghosh, Jun 03 2017
(Python)
A018900_list = [2**a+2**b for a in range(1, 10) for b in range(a)] # Chai Wah Wu, Jan 24 2021
CROSSREFS
Cf. A000079, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (Hamming weight = 1, 3, 4, ..., 9).
Sum of base-b digits equal b: A226636 (b = 3), A226969 (b = 4), A227062 (b = 5), A227080 (b = 6), A227092 (b = 7), A227095 (b = 8), A227238 (b = 9), A052224 (b = 10). [M. F. Hasler, Dec 23 2016]
KEYWORD
nonn,easy,nice,tabl,look
AUTHOR
Jonn Dalton (jdalton(AT)vnet.ibm.com), Dec 11 1996
EXTENSIONS
Edited by M. F. Hasler, Dec 23 2016
STATUS
approved
Decimal expansion of Erdős-Borwein constant Sum_{k>=1} 1/(2^k - 1).
+10
55
1, 6, 0, 6, 6, 9, 5, 1, 5, 2, 4, 1, 5, 2, 9, 1, 7, 6, 3, 7, 8, 3, 3, 0, 1, 5, 2, 3, 1, 9, 0, 9, 2, 4, 5, 8, 0, 4, 8, 0, 5, 7, 9, 6, 7, 1, 5, 0, 5, 7, 5, 6, 4, 3, 5, 7, 7, 8, 0, 7, 9, 5, 5, 3, 6, 9, 1, 4, 1, 8, 4, 2, 0, 7, 4, 3, 4, 8, 6, 6, 9, 0, 5, 6, 5, 7, 1, 1, 8, 0, 1, 6, 7, 0, 1, 5, 5, 5, 7, 5, 8, 9, 7, 0, 4
OFFSET
1,2
COMMENTS
Also the decimal expansion of the (finite) value of Sum_{ k >= 1, k has no digit equal to 0 in base 2 } 1/k. - Robert G. Wilson v, Aug 03 2010
This constant is irrational (Erdős, 1948; Borwein, 1992). - Amiram Eldar, Aug 01 2020
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.
Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, p. 258.
LINKS
David H. Bailey and Richard E. Crandall, Random generators and normal numbers, Experimental Mathematics, Vol. 11, No. 4 (2002), pp. 527-546.
Robert Baillie, Summing The Curious Series Of Kempner and Irwin, arXiv:0806.4410 [math.CA], 2008-2015.
Peter Borwein, On the Irrationality of Certain Series, Math. Proc. Cambridge Philos. Soc., Vol. 112, No. 1 (1992), pp. 141-146, alternative link.
Richard Crandall, The googol-th bit of the Erdős-Borwein constant, Integers, 12 (2012), A23.
Paul Erdős, On Arithmetical Properties of Lambert Series, J. Indian Math. Soc., Vol. 12 (1948), 63-66.
Steven R. Finch, Digital Search Tree Constants [Broken link]
Steven R. Finch, Digital Search Tree Constants [From the Wayback machine]
Nobushige Kurokawa and Yuichiro Taguchi, A p-analogue of Euler’s constant and congruence zeta functions, Proc. Japan Acad. Ser. A Math. Sci., Volume 94, Number 2 (2018), 13-16.
Mathematics Stack Exchange, Find Sum_{k = 1..oo} 1/(2^(k+1) - 1).
Yohei Tachiya, Irrationality of Certain Lambert Series, Tokyo J. Math. 27 (1) 75 - 85, June 2004.
László Tóth, Alternating sums concerning multiplicative arithmetic functions, arXiv preprint arXiv:1608.00795 [math.NT], 2016.
Hengjie Yang and Richard D. Wesel, Systematic Transmission With Fountain Parity Checks for Erasure Channels With Stop Feedback, arXiv:2307.14507 [cs.IT], 2023.
Rimer Zurita, Generalized Alternating Sums of Multiplicative Arithmetic Functions, J. Int. Seq., Vol. 23 (2020), Article 20.10.4.
FORMULA
Note: Sum_{k>=1} d(k)/2^k = Sum_{k>=1} 1/(2^k - 1).
Fast computation via Lambert series: 1.60669515... = Sum_{n>=1} x^(n^2)*(1+x^n)/(1-x^n) where x=1/2. - Joerg Arndt, May 24 2011
Equals (1/2) * A211705. - Amiram Eldar, Aug 01 2020
Equals 1/4 + Sum_{k >= 2} (1 + 8^k)/((2^k - 1)*2^(k^2+k)). See Mathematics Stack Exchange link. - Peter Bala, Jan 28 2022
Equals A066766 - A065443. - Amiram Eldar, Oct 16 2022
EXAMPLE
1.60669515241529176378330152319092458048057967150575643577807955369...
MAPLE
# Uses Lambert series, cf. formula by Arndt:
evalf( add( (1/2)^(n^2)*(1 + 2/(2^n - 1)), n = 1..20 ), 105);
# Peter Bala, Jan 22 2021
MATHEMATICA
RealDigits[ Sum[1/(2^k - 1), {k, 350}], 10, 111][[1]] (* Robert G. Wilson v, Nov 05 2006 *)
(* first install irwinSums.m, see reference, then *) First@ RealDigits@ iSum[0, 0, 111, 2] (* Robert G. Wilson v, Aug 03 2010 *)
RealDigits[(Log[2] - 2 QPolyGamma[0, 1, 2])/Log[4], 10, 100][[1]] (* Fred Daniel Kline, May 23 2011 *)
x = 1/2; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* Robert G. Wilson v, Oct 12 2014 after an observation and formula of Amarnath Murthy, see A073668 *)
PROG
(PARI) a(n)= s=0; for(x=1, n, s=s+1.0/(2^x-1)); s
(PARI) default(realprecision, 2080); x=suminf(k=1, 1/(2^k - 1)); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065442.txt", n, " ", d)) \\ Harry J. Smith, Oct 19 2009
(PARI) k=1.; suminf(n=1, k>>=1; k^n*(1+k)/(1-k)) \\ Charles R Greathouse IV, Jun 03 2015
CROSSREFS
See A038631 for continued fraction.
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Nov 18 2001
EXTENSIONS
More terms from Randall L Rathbun, Jan 16 2002
STATUS
approved
Integers with one or two 1-bits in their binary expansion.
+10
34
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032
OFFSET
1,2
COMMENTS
Apart from initial 1, sums of two not necessarily distinct powers of 2.
4 does not divide C(2s-1,s) (= A001700[ s ]) if and only if s=a(n).
Possible number of sides of a regular polygon such that there exists a triangulation where each triangle is isosceles. - Sen-peng Eu, May 07 2008
Also numbers n such that n!/2^(n-2) is an integer. - Michel Lagneau, Mar 28 2011
It appears these are also the indices of the terms that are shared by the cellular automata of A147562, A162795, A169707. - Omar E. Pol, Feb 21 2015
Numbers with binary weight 1 or 2. - Omar E. Pol, Feb 22 2015
LINKS
Michael P. Connolly, Probabilistic rounding error analysis for numerical linear algebra, Ph. D. Thesis, Univ. Manchester (UK, 2022). See p. 55.
USA Mathematical Olympiad, Problem 4, 2008.
Eric Weisstein's World of Mathematics, Automatic Set.
Eric Weisstein's World of Mathematics, Binomial Coefficient.
FORMULA
a(0) = 1, a(n) = (2^(trinv(n-1)-1) + 2^((n-1)-((trinv(n-1)*(trinv(n-1)-1))/2))), i.e., 2^A003056(n) + 2^A002262(n-1) (the latter sequence contains the definition of trinv).
Let Theta = Sum_{k >= 0} x^(2^k). Then Sum_{n>=1} x^a(n) = (Theta^2 + Theta + x)/2. - N. J. A. Sloane, Jun 23 2009
As a triangle, for n > 1, 1 < k <= n: T(n,1) = A173786(n-2,n-2) and T(n,k) = A173786(n-1,k-2). - Reinhard Zumkeller, Feb 28 2010
It appears that A147562(a(n)) = A162795(a(n)) = A169707(a(n)). - Omar E. Pol, Feb 19 2015
Sum_{n>=1} 1/a(n) = 2 + A179951. - Amiram Eldar, Jan 22 2022
EXAMPLE
From Omar E. Pol, Feb 18 2015: (Start)
Also, written as a triangle T(j,k), k >= 1, in which row lengths are the terms of A028310:
1;
2;
3, 4;
5, 6, 8;
9, 10, 12, 16;
17, 18, 20, 24, 32;
33, 34, 36, 40, 48, 64;
65, 66, 68, 72, 80, 96, 128;
...
It appears that column 1 is A094373.
It appears that the right border gives A000079.
It appears that the first differences in every row that contains at least two terms give the first h-1 powers of 2, where h is the length of the row.
(End)
MAPLE
lincom:=proc(a, b, n) local i, j, s, m; s:={}; for i from 0 to n do for j from 0 to n do m:=a^i+b^j; if m<=n then s:={op(s), m} fi od; od; lprint(sort([op(s)])); end: lincom(2, 2, 1000); # Zerinvary Lajos, Feb 24 2007
MATHEMATICA
Select[Range[2000], 1 <= DigitCount[#, 2, 1] <= 2&] (* Jean-François Alcover, Mar 06 2016 *)
PROG
(Haskell)
import Data.List (insert)
a048645 n k = a048645_tabl !! (n-1) !! (k-1)
a048645_row n = a048645_tabl !! (n-1)
a048645_tabl = iterate (\xs -> insert (2 * head xs + 1) $ map ((* 2)) xs) [1]
a048645_list = concat a048645_tabl
-- Reinhard Zumkeller, Dec 19 2012
(PARI) isok(n) = my(hw = hammingweight(n)); (hw == 1) || (hw == 2); \\ Michel Marcus, Mar 06 2016
(PARI) a(n) = if(n <= 2, return(n), n-=2); my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)) \\ David A. Corneth, Jan 02 2019
(PARI) nxt(n) = msb = 1 << logint(n, 2); if(n == msb, n + 1, t = n - msb; n + t) \\ David A. Corneth, Jan 02 2019
(Python)
def ok(n): return 1 <= bin(n)[2:].count('1') <= 2
print([k for k in range(1033) if ok(k)]) # Michael S. Branicky, Jan 22 2022
(Python)
from itertools import count, islice
def agen(): # generator of terms
for d in count(0):
msb = 2**d
yield msb
for lsb in range(d):
yield msb + 2**lsb
print(list(islice(agen(), 60))) # Michael S. Branicky, Jan 22 2022
KEYWORD
easy,nonn,base,tabl
AUTHOR
Antti Karttunen, Jul 14 1999
STATUS
approved
Decimal expansion of 1/2 + 1/3 + 1/5 + ... + 1/(2^n + 1) + ...
+10
6
1, 2, 6, 4, 4, 9, 9, 7, 8, 0, 3, 4, 8, 4, 4, 4, 2, 0, 9, 1, 9, 1, 3, 1, 9, 7, 4, 7, 2, 5, 5, 4, 9, 8, 4, 8, 2, 5, 5, 7, 6, 9, 6, 9, 9, 8, 8, 5, 7, 5, 2, 5, 6, 2, 6, 5, 6, 6, 2, 3, 7, 9, 6, 0, 2, 6, 5, 8, 7, 5, 6, 7, 9, 7, 6, 6, 0, 0, 7, 0, 8, 5, 0, 6, 1, 9
OFFSET
1,2
LINKS
FORMULA
From Amiram Eldar, Jun 30 2020: (Start)
Equals 1/2 + Sum_{k>=1} (-1)^(k+1)/(2^k-1)
Equals Sum_{k>=1} (mu(k) - (-1)^k)/(2^k-1), where mu is the Möbius function (A008683).
Equals (1 + A179951)/2. (End)
Equals (1/2) + Sum_{n >= 1} (-1)^(n+1)*((4^n + 1)/(4^n - 1))*(1/2)^(n^2). The first 18 terms of the series gives the constant correct to more than 100 decimal places. - Peter Bala, Jan 28 2022
EXAMPLE
1.2644997803484442091913...
MAPLE
evalf((1/2) + add( (-1)^(n+1)*((4^n + 1)/(4^n - 1))*(1/2)^(n^2), n = 1..18), 100); # Peter Bala, Jan 28 2022
MATHEMATICA
s = Sum[1/(2^k + 1), {k, 0, Infinity}]
r = N[Re[s], 200]
RealDigits[r][[1]]
PROG
(PARI) suminf(k=0, 1/(2^k+1)) \\ Michel Marcus, Jan 15 2019
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Jan 15 2019
STATUS
approved
Decimal expansion of Sum_{k has exactly 3 bits equal to 1 in base 2} 1/k.
+10
1
1, 4, 2, 8, 5, 9, 1, 5, 4, 5, 8, 5, 2, 6, 3, 8, 1, 2, 3, 9, 9, 6, 8, 5, 4, 8, 4, 4, 4, 0, 0, 5, 3, 7, 9, 5, 2, 7, 8, 1, 6, 8, 8, 7, 5, 0, 9, 0, 6, 1, 3, 3, 0, 6, 8, 3, 9, 7, 1, 8, 9, 5, 2, 9, 7, 7, 5, 3, 6, 5, 9, 5, 0, 0, 3, 9, 7, 4, 4, 5, 2, 9, 6, 8, 0, 0, 5, 1, 1, 6, 3, 5, 7, 0, 8, 6, 2, 2, 7, 2, 7, 1, 9, 1, 5
OFFSET
1,2
COMMENTS
For 1 bit equal to 1 the sum is 2, for 2 bits equal to 1 the sum is 1.52899956069688841838263949451... (see A179951).
LINKS
Robert Baillie, Summing The Curious Series Of Kempner and Irwin, arXiv:0806.4410 [math.CA], 2008-2015.
Wolfram Library Archive, KempnerSums.nb (8.6 KB) - Mathematica Notebook, Summing Kempner's Curious (Slowly-Convergent) Series
FORMULA
Equals Sum_{m>=2} Sum_{j=1..m-1} Sum_{i=0..j-1} 1/(2^i + 2^j + 2^m).
Equals 2 * Sum_{j>=2} Sum_{i=1..j-1} 1/(2^i + 2^j + 1).
Equals Sum_{k>=1} 1/A014311(k).
EXAMPLE
1.4285915458526381...
MATHEMATICA
RealDigits[iSum[1, 3, 105, 2]][[1]] (* Amiram Eldar, Dec 16 2023, using Baillie's irwinSums.m *)
CROSSREFS
KEYWORD
cons,nonn,base
AUTHOR
Tengiz Gogoberidze, Dec 16 2023
STATUS
approved

Search completed in 0.009 seconds