OFFSET
1,2
COMMENTS
No more terms up to 2^300. The sequence is finite by results of Sander and of Granville and Ramaré (see links). - Robert Israel, Dec 10 2015
LINKS
Eric Weisstein's World of Mathematics, Binomial Coefficient.
A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107.
J. W. Sander, Prime power divisors of binomial coefficients, Journal für die reine und angewandte Mathematik 430 (1992), 1-20.
MAPLE
select(n -> numtheory:-issqrfree(binomial(2*n-1, n)), [$1..2000]); # Robert Israel, Dec 09 2015
N:= 300: # to find all terms <= 2^N
carries:= proc(n, m, p)
# number of carries when adding n + m in base p.
local A, B, C, j, nc, t;
A:= convert(m, base, p);
B:= convert(n, base, p);
C:= 0; nc:= 0;
if nops(A) < nops(B) then A = [op(A), 0$(nops(B)-nops(A))]
elif nops(A) > nops(B) then B:= [op(B), 0$(nops(A)-nops(B))]
fi;
for j from 1 to nops(A) do
t:= C + A[j] + B[j];
if t >= p then
nc:= nc+1;
C:= 1;
else
C:= 0
fi
od:
nc;
end proc:
Cands:= {seq(2^j, j=0..N), seq(seq(2^j + 2^k, k=0..j-1), j=1..N-1)}:
for i from 2 to 10 do
Cands:= select(n -> carries(n-1, n, ithprime(i)) <= 1, Cands)
od:
select(n -> numtheory:-issqrfree(binomial(2*n-1, n)), Cands); # Robert Israel, Dec 10 2015
MATHEMATICA
Select[ Range[1500], SquareFreeQ[ Binomial[ 2#-1, #]] &] (* Jean-François Alcover, Oct 25 2012 *)
PROG
(PARI) is(n)=issquarefree(binomial(2*n-1, n)) \\ Anders Hellström, Dec 09 2015
(Magma) [n: n in [1..150] | IsSquarefree(Binomial(2*n-1, n))]; // Vincenzo Librandi, Dec 10 2015
CROSSREFS
Cf. A001700.
For a term to be here, it needs to be at least in the intersection of A048645, A051382, A050607, A050608 and an infinitude of similar sequences. The corresponding location in next-to-center column should be nonzero in A034931 (Pascal's triangle mod 4) and all similarly constructed fractal triangles (Pascal's triangle mod p^2).
KEYWORD
nonn,fini
AUTHOR
EXTENSIONS
James A. Sellers reports no further terms below 1500.
Michael Somos checked to 99999. Probably there are no more terms.
Mauro Fiorentini checked up to 2^64, as for n = 545259520, the binomial coefficient is a multiple of 5^4 and other possible exceptions have been checked (see Weisstein page for details).
STATUS
approved