[go: up one dir, main page]

login
Search: a177978 -id:a177978
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k) read by rows defined by recurrence T(n,1)=A000007(n-1) and T(n,k) = sum_{i=1..k-1} T(n-i,k-1) if k>1.
+10
6
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 3, 1, 0, 0, 0, 1, 5, 4, 1, 0, 0, 0, 0, 6, 9, 5, 1, 0, 0, 0, 0, 5, 15, 14, 6, 1, 0, 0, 0, 0, 3, 20, 29, 20, 7, 1, 0, 0, 0, 0, 1, 22, 49, 49, 27, 8, 1, 0, 0, 0, 0, 0, 20, 71, 98, 76, 35, 9, 1, 0, 0, 0, 0, 0, 15, 90, 169, 174, 111, 44, 10, 1, 0, 0, 0, 0, 0, 9, 101, 259, 343, 285, 155, 54, 11, 1, 0, 0, 0, 0, 0, 4, 101, 359, 602, 628, 440, 209, 65, 12, 1, 0, 0, 0, 0, 0, 1, 90, 455, 961, 1230, 1068, 649, 274, 77, 13, 1
OFFSET
1,14
COMMENTS
A008302 is the main entry for this triangle.
Essentially A060701 which is equal to this table beginning from the second column.
The recurrence formula is similar to the recurrence for A177978.
LINKS
FORMULA
T(n,k) = A008302(k-2,n-k), n>=k>1. - R. J. Mathar, Dec 15 2010
EXAMPLE
1,
0,1,
0,0,1,
0,0,1,1,
0,0,0,2,1,
0,0,0,2,3,1,
0,0,0,1,5,4,1,
0,0,0,0,6,9,5,1,
0,0,0,0,5,15,14,6,1,
0,0,0,0,3,20,29,20,7,1,
0,0,0,0,1,22,49,49,27,8,1
MATHEMATICA
t[1, 1] = 1; t[n_, 1] = 0; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}], 0];
Flatten[Table[t[n, k], {n, 12}, {k, n}]]
(* Robert G. Wilson v, Jun 24 2011 *) (* corrected by Mats Granvik, Jan 23 2012 *)
CROSSREFS
Cf. A008302, A060701, A177978, A175105. Column sums are A000142. Row sums are A008930.
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved
Square array T(n,k) read by antidiagonals up. Each column is the first column in the matrix inverse of a triangular matrix that is the k-th differences of A051731 in the column direction.
+10
2
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 4, 7, 9, 4, 1, 0, 2, 14, 16, 14, 5, 1, 0, 6, 13, 34, 30, 20, 6, 1, 0, 4, 27, 43, 69, 50, 27, 7, 1, 0, 6, 26, 83, 107, 125, 77, 35, 8, 1, 0, 4, 39, 100, 209, 226, 209, 112, 44, 9, 1, 0, 10, 38, 155, 295, 461, 428, 329, 156, 54, 10, 1
OFFSET
1,8
COMMENTS
The first column in this array is the first column in A134540 which is the matrix inverse of A177978. The second column is the first column in A159905. The rows in this array are described by both binomial expressions and closed form polynomials.
LINKS
FORMULA
From Seiichi Manyama, Jun 12 2021: (Start)
G.f. of column k: Sum_{j>=1} mu(j) * x^j/(1 - x^j)^k.
T(n,k) = Sum_{d|n} mu(n/d) * binomial(d+k-2,d-1). (End)
EXAMPLE
Table begins:
1..1...1...1....1.....1.....1......1......1.......1.......1
0..1...2...3....4.....5.....6......7......8.......9......10
0..2...5...9...14....20....27.....35.....44......54......65
0..2...7..16...30....50....77....112....156.....210.....275
0..4..14..34...69...125...209....329....494.....714....1000
0..2..13..43..107...226...428....749...1234....1938....2927
0..6..27..83..209...461...923...1715...3002....5004....8007
0..4..26.100..295...736..1632...3312...6270...11220...19162
0..6..39.155..480..1266..2975...6399..12825...24255...43692
0..4..38.182..641..1871..4789..11103..23807...47896...91367
0.10..65.285.1000..3002..8007..19447..43757...92377..184755
0..4..50.292.1209..4066.11837..30920..74139..165748..349438
0.12..90.454.1819..6187.18563..50387.125969..293929..646645
0..6..75.473.2166..8101.26202..75797.200479..492406.1136048
0..8.100.636.2976.11482.38523.115915.319231..816421.1960190
0..8.100.696.3546.14712.52548.167112.483879.1296064.3249312
PROG
(PARI) T(n, k) = sumdiv(n, d, moebius(n/d)*binomial(d+k-2, d-1)); \\ Seiichi Manyama, Jun 12 2021
CROSSREFS
Column k=1..5 gives A063524, A000010, A007438, A117108, A117109.
Main diagonal gives A332470.
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, May 16 2010
STATUS
approved

Search completed in 0.006 seconds