[go: up one dir, main page]

login
Search: a177517 -id:a177517
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle A177517 mod 2. Mahonian numbers modulo 2.
+20
2
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1
OFFSET
1
COMMENTS
Each column is a palindrome. The left half of the triangle displays chaos, the right half consists of triangles filled with zeros. Pattern is similar to patterns found in elementary cellular automata. The rule is different.
Compare the recurrence for this triangle:
T(1,1)=1, n > 1: T(n,1)=0, k > 1: T(n,k) = (Sum_{i=1..k-1} of T(n-i,k-1)) mod 2
with the recurrence for Dirichlet convolutions:
T(n,1)=1, k > 1: T(n,k) = ((Sum_{i=1..k-1} T(n-i,k-1)) mod 2) - ((Sum_{i=1..k-1} T(n-i,k)) mod 2) which in turn gives triangle A051731.
FORMULA
T(1,1)=1, n > 1: T(n,1)=0, k > 1: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) mod 2.
EXAMPLE
Triangle starts:
1;
0, 1;
0, 0, 1;
0, 0, 1, 1;
0, 0, 0, 0, 1;
0, 0, 0, 0, 1, 1;
0, 0, 0, 1, 1, 0, 1;
0, 0, 0, 0, 0, 1, 1, 1;
0, 0, 0, 0, 1, 1, 0, 0, 1;
0, 0, 0, 0, 1, 0, 1, 0, 1, 1;
0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1;
MAPLE
T:= proc(n, k) option remember;
if k=n then 1
else `mod`( add(T(n-j, k-1), j=1..k-1), 2)
fi; end:
seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Dec 17 2019
MATHEMATICA
nn = 19; t[n_, 1] = If[n==1, 1, 0]; t[n_, k_]:= t[n, k] = If[n>= k, Mod[Sum[t[n-i, k-1], {i, 1, k-1}], 2], 0]; Flatten[Table[t[n, k], {n, nn}, {k, n}]] (* Mats Granvik, Dec 06 2019 *)
PROG
(Excel cell formula, European) =if(column()=1; if(row()=1; 1; 0); if(row()>=column(); mod(sum(indirect(address(row()-column()+1; column()-1; 4)&":"&address(row()-1; column()-1; 4); 4)); 2); 0))
(Excel cell formula, American) =if(column()=1, if(row()=1, 1, 0), if(row()>=column(), mod(sum(indirect(address(row()-column()+1, column()-1, 4)&":"&address(row()-1, column()-1, 4), 4)), 2), 0))
(PARI) T(n, k) = if(k<1 || k>n, 0, if(k==n, 1, sum(j=1, k-1, T(n-j, k-1))%2 ));
for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 17 2019
(Magma)
function T(n, k)
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
elif k eq 1 then return 0;
else return (&+[T(n-j, k-1): j in [1..k-1]]) mod 2;
end if; return T; end function;
[T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Dec 17 2019
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (k==1): return 0
else: return mod( sum(T(n-j, k-1) for j in (1..k-1)), 2)
[[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Dec 17 2019
(GAP)
T:= function(n, k)
if k<0 or k>n then return 0;
elif k=n then return 1;
elif k=1 then return 0;
else return Sum([1..k-1], j-> T(n-j, k-1)) mod 2;
fi;
end;
Flat(List([1..12], n-> List([1..n], k-> T(n, k) ))); # G. C. Greubel, Dec 17 2019
CROSSREFS
Cf. A177517, A008302, A186519 (row sums).
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, Feb 23 2011
STATUS
approved
Antidiagonal sums of A177517.
+20
1
1, 0, 1, 0, 1, 1, 1, 2, 3, 4, 6, 10, 15, 23, 36, 57, 90, 142, 225, 358, 571, 912, 1458, 2334, 3742, 6006, 9648, 15510, 24951, 40164, 64689, 104241, 168048, 271015, 437221, 705571, 1138934, 1838916, 2969746, 4796900, 7749561, 12521629, 20235080, 32704173, 52862781, 85455587, 138156111, 223375201, 361186480, 584058718, 944511360, 1527499074, 2470446924, 3995662918, 6462775233, 10453566628, 16909223601, 27352387053, 44246403940, 71576559073
OFFSET
1,8
COMMENTS
a(n+1)/a(n) tends to the golden ratio. Grows more slowly than the Fibonacci sequence. More complicated than the Fibonacci sequence.
a(n)=First differences of A186425.
CROSSREFS
KEYWORD
nonn
AUTHOR
Mats Granvik, Feb 21 2011
STATUS
approved
A row reversed version of A177517
+20
0
1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 3, 2, 1, 4, 5, 1, 1, 5, 9, 6, 1, 6, 14, 15, 5, 1, 7, 20, 29, 20, 1, 8, 27, 49, 49, 22, 1, 9, 35, 76, 98, 71
OFFSET
1,8
COMMENTS
The row reversal allows getting rid of the initial zeros in A177517
and shows the polynomial structure of the sequence more clearly.
EXAMPLE
{1},
{1},
{1, 0},
{1, 1},
{1, 2, 0},
{1, 3, 2},
{1, 4, 5, 1},
{1, 5, 9, 6},
{1, 6, 14, 15, 5},
{1, 7, 20, 29, 20},
{1, 8, 27, 49, 49, 22},
{1, 9, 35, 76, 98, 71}
MATHEMATICA
Clear[t, n, k]
t[n_, 1] := If[n == 1, 1, 0]
t[n_, k_] := t[n, k] = Sum[t[n - i, k - 1], {i, 1, k - 1}]
a = Table[Reverse[Table[t[n, k], {k, 1, n}]], {n, 1, 12}];
Table[Table[a[[n, k]], {k, 1, Floor[(n + 1)/2]}], {n, 1, Length[a]}];
Flatten[%]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula and Mats Granvik, Dec 12 2010
STATUS
approved
Number of compositions (p_1, p_2, p_3, ...) of n with 1 <= p_i <= i for all i.
+10
36
1, 1, 1, 2, 3, 6, 11, 21, 41, 80, 157, 310, 614, 1218, 2421, 4819, 9602, 19147, 38204, 76266, 152307, 304256, 607941, 1214970, 2428482, 4854630, 9705518, 19405030, 38800412, 77585314, 155145677, 310251190, 620437691, 1240771141, 2481374234
OFFSET
0,4
COMMENTS
a(n) is the number of compositions (p_1,p_2,...) of n with 1<=p_i<=i for all i. a(n) is the number of Dyck n-paths with strictly increasing peaks. To get the correspondence, given such a Dyck path, split the path after the first up step reaching height i, i=1,2,...,h where h is the path's maximum height and count up steps in each block. Example: U-U-DUU-U-DDDD has been split as specified, yielding the composition (1,1,2,1). - David Callan, Feb 18 2004
Row sums of triangle A177517.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..3324 (first 201 terms from Vincenzo Librandi)
Margaret Archibald, Aubrey Blecher, Arnold Knopfmacher, and Stephan Wagner, Subdiagonal and superdiagonal compositions, Art Disc. Appl. Math. (2024). See p. 5.
Roland Bacher, Generic numerical semigroups, hal-03221466 [math.CO], 2021.
Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
M. Torelli, Increasing integer sequences and Goldbach's conjecture, RAIRO - Theoretical Informatics and Applications, vol.40, no.02 (April 2006), pp.107-121.
FORMULA
G.f.: A(x) = Sum_{n>=0} x^n * Product_{k=1..n} (1-x^k)/(1-x). - Paul D. Hanna, Mar 20 2003
G.f.: A(x) = 1/(1 - x/(1+x) /(1 - x/(1+x+x^2) /(1 - x/(1+x+x^2+x^3) /(1 - x/(1+x+x^2+x^3+x^4) /(1 - x/(1+x+x^2+x^3+x^4+x^5) /(1 -...)))))), a continued fraction. - Paul D. Hanna, May 15 2012
Limit_{n->oo} a(n+1)/a(n) = 2. - Mats Granvik, Feb 22 2011
a(n) ~ c * 2^(n-1), where c = 0.288788095086602421... (see constant A048651). - Vaclav Kotesovec, Mar 17 2014
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 11*x^6 + 21*x^7 + ...
The g.f. equals the following series involving q-factorials:
A(x) = 1 + x + x^2*(1+x) + x^3*(1+x)*(1+x+x^2) + x^4*(1+x)*(1+x+x^2)*(1+x+x^2+x^3) + x^5*(1+x)*(1+x+x^2)*(1+x+x^2+x^3)*(1+x+x^2+x^3+x^4) + ...
From Joerg Arndt, Dec 28 2012: (Start)
There are a(7)=21 compositions p(1)+p(2)+...+p(m) = 7 such that p(k) <= k:
[ 1] [ 1 1 1 1 1 1 1 ]
[ 2] [ 1 1 1 1 1 2 ]
[ 3] [ 1 1 1 1 2 1 ]
[ 4] [ 1 1 1 1 3 ]
[ 5] [ 1 1 1 2 1 1 ]
[ 6] [ 1 1 1 2 2 ]
[ 7] [ 1 1 1 3 1 ]
[ 8] [ 1 1 1 4 ]
[ 9] [ 1 1 2 1 1 1 ]
[10] [ 1 1 2 1 2 ]
[11] [ 1 1 2 2 1 ]
[12] [ 1 1 2 3 ]
[13] [ 1 1 3 1 1 ]
[14] [ 1 1 3 2 ]
[15] [ 1 2 1 1 1 1 ]
[16] [ 1 2 1 1 2 ]
[17] [ 1 2 1 2 1 ]
[18] [ 1 2 1 3 ]
[19] [ 1 2 2 1 1 ]
[20] [ 1 2 2 2 ]
[21] [ 1 2 3 1 ]
(End)
MAPLE
b:= proc(n, i) option remember; `if`(i>=n,
ceil(2^(n-1)), add(b(n-j, i+1), j=1..min(i, n)))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..50); # Alois P. Heinz, Mar 25 2014, revised Jun 26 2023
MATHEMATICA
Sum[x^n*Product[(1-x^k)/(1-x), {k, 1, n}], {n, 0, 40}]+O[x]^41
Table[SeriesCoefficient[1+Sum[x^j*Product[(1-x^k)/(1-x), {k, 1, j}], {j, 1, n}], {x, 0, n}], {n, 0, 40}] (* Vaclav Kotesovec, Mar 17 2014 *)
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, i+1], {j, 1, Min[i, n]}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)
PROG
(PARI) { n=8; v=vector(n); for (i=1, n, v[i]=vector(i!)); v[1][1]=1; for (i=2, n, k=length(v[i-1]); for (j=1, k, for (a=0, i-1, v[i][j+a*k]=v[i-1][j]+a+1))); c=vector(n); for (i=1, n, for (j=1, i!, if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
(PARI) N=66; q='q+O('q^N); Vec( sum(n=0, N, q^n * prod(k=1, n, (1-q^k)/(1-q) ) ) ) \\ Joerg Arndt, Mar 24 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Mauro Torelli (torelli(AT)hermes.mc.dsi.unimi.it)
EXTENSIONS
More terms from Paul D. Hanna, Mar 20 2003
Offset corrected to 0 by Joerg Arndt, Mar 24 2014
New name (using comment by David Callan) from Joerg Arndt, Mar 25 2014
STATUS
approved
Triangle T(n,k) read by rows: A051731(n,k) - A051731(n-1,k).
+10
2
1, 0, 1, 0, -1, 1, 0, 1, -1, 1, 0, -1, 0, -1, 1, 0, 1, 1, 0, -1, 1, 0, -1, -1, 0, 0, -1, 1, 0, 1, 0, 1, 0, 0, -1, 1, 0, -1, 1, -1, 0, 0, 0, -1, 1, 0, 1, -1, 0, 1, 0, 0, 0, -1, 1, 0, -1, 0, 0, -1, 0, 0, 0, 0, -1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, -1, 1, 0, -1, -1, -1, 0, -1, 0, 0, 0, 0, 0, -1, 1, 0, 1
OFFSET
1,1
COMMENTS
The recurrence for this triangle is similar to the recurrence in A177517. Cumulative column sums give table A051731.
FORMULA
T(n,1)=A000007, k > 1: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) - (Sum_{i=1..k-1} T(n-i,k)).
EXAMPLE
Triangle begins:
1;
0, 1;
0, -1, 1;
0, 1, -1, 1;
0, -1, 0, -1, 1;
0, 1, 1, 0, -1, 1;
0, -1, -1, 0, 0, -1, 1;
0, 1, 0, 1, 0, 0, -1, 1;
0, -1, 1, -1, 0, 0, 0, -1, 1;
0, 1, -1, 0, 1, 0, 0, 0, -1, 1;
0, -1, 0, 0, -1, 0, 0, 0, 0, -1, 1;
0, 1, 1, 1, 0, 1, 0, 0, 0, 0, -1, 1;
0, -1, -1, -1, 0, -1, 0, 0, 0, 0, 0, -1, 1;
0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 1;
PROG
(Excel cell formula, American) =if(column()=1, if(row()>1, 0, 1), if(row()>=column(), sum(indirect(address(row()-column()+1, column()-1, 4)&":"&address(row()-1, column()-1, 4), 4))-sum(indirect(address(row()-column()+1, column(), 4)&":"&address(row()-1, column(), 4), 4)), 0))
(Excel cell formula, European)=if(column()=1; if(row()>1; 0; 1); if(row()>=column(); sum(indirect(address(row()-column()+1; column()-1; 4)&":"&address(row()-1; column()-1; 4); 4))-sum(indirect(address(row()-column()+1; column(); 4)&":"&address(row()-1; column(); 4); 4)); 0))
CROSSREFS
Matrix inverse of A134540. Cf. A177517.
KEYWORD
sign,tabl
AUTHOR
Mats Granvik, May 16 2010
EXTENSIONS
Typo in sequence (erroneous comma) corrected by N. J. A. Sloane, May 22 2010
Edited by Mats Granvik, Dec 11 2010
STATUS
approved

Search completed in 0.005 seconds