[go: up one dir, main page]

login
A177975
Square array T(n,k) read by antidiagonals up. Each column is the first column in the matrix inverse of a triangular matrix that is the k-th differences of A051731 in the column direction.
2
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 4, 7, 9, 4, 1, 0, 2, 14, 16, 14, 5, 1, 0, 6, 13, 34, 30, 20, 6, 1, 0, 4, 27, 43, 69, 50, 27, 7, 1, 0, 6, 26, 83, 107, 125, 77, 35, 8, 1, 0, 4, 39, 100, 209, 226, 209, 112, 44, 9, 1, 0, 10, 38, 155, 295, 461, 428, 329, 156, 54, 10, 1
OFFSET
1,8
COMMENTS
The first column in this array is the first column in A134540 which is the matrix inverse of A177978. The second column is the first column in A159905. The rows in this array are described by both binomial expressions and closed form polynomials.
LINKS
FORMULA
From Seiichi Manyama, Jun 12 2021: (Start)
G.f. of column k: Sum_{j>=1} mu(j) * x^j/(1 - x^j)^k.
T(n,k) = Sum_{d|n} mu(n/d) * binomial(d+k-2,d-1). (End)
EXAMPLE
Table begins:
1..1...1...1....1.....1.....1......1......1.......1.......1
0..1...2...3....4.....5.....6......7......8.......9......10
0..2...5...9...14....20....27.....35.....44......54......65
0..2...7..16...30....50....77....112....156.....210.....275
0..4..14..34...69...125...209....329....494.....714....1000
0..2..13..43..107...226...428....749...1234....1938....2927
0..6..27..83..209...461...923...1715...3002....5004....8007
0..4..26.100..295...736..1632...3312...6270...11220...19162
0..6..39.155..480..1266..2975...6399..12825...24255...43692
0..4..38.182..641..1871..4789..11103..23807...47896...91367
0.10..65.285.1000..3002..8007..19447..43757...92377..184755
0..4..50.292.1209..4066.11837..30920..74139..165748..349438
0.12..90.454.1819..6187.18563..50387.125969..293929..646645
0..6..75.473.2166..8101.26202..75797.200479..492406.1136048
0..8.100.636.2976.11482.38523.115915.319231..816421.1960190
0..8.100.696.3546.14712.52548.167112.483879.1296064.3249312
PROG
(PARI) T(n, k) = sumdiv(n, d, moebius(n/d)*binomial(d+k-2, d-1)); \\ Seiichi Manyama, Jun 12 2021
CROSSREFS
Column k=1..5 gives A063524, A000010, A007438, A117108, A117109.
Main diagonal gives A332470.
Sequence in context: A280817 A060086 A308680 * A340995 A363733 A062135
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, May 16 2010
STATUS
approved