[go: up one dir, main page]

login
Search: a160644 -id:a160644
     Sort: relevance | references | number | modified | created      Format: long | short | data
Table with the mapped A125106(p) in row n where p runs through the partitions counted by A160644(n).
+0
1
2, 6, 12, 14, 24, 26, 30, 48, 50, 54, 62, 56, 60, 96, 98, 102, 110, 126, 104, 108, 114, 122, 192, 194, 198, 206, 222, 254, 120, 200, 204, 210, 218, 230, 246, 384, 386, 390, 398, 414, 446, 510, 216, 224, 228, 236, 242, 252, 392, 396, 402, 410, 422, 438, 462, 494, 768, 770
OFFSET
1,1
COMMENTS
A160644(n) with n > 0 counts the partitions of 2n such that all parts are > 1 and the largest part occurs more than once. If n=7, these are 10 partitions of 14: 2^7 = (2^4;3^2) = (2^1;3^4) = (2^3;4^2) = (3^2;4^2) = (2^1;4^3) = (2^2;5^2) = (4^1;5^2) = (2^1;6^2) = 7^2, for example.
For each of these admitted partitions p of 2n, p is mapped to a binary and the decimal rep. of this binary is added to row n of this table here, sorting the row according to the natural order of integers (not according to any property of partitions).
EXAMPLE
The partition 4+4+4+4 = 16 and maps to 120 = 64 + 32 + 16 + 8 as described in A125106, so 120 is in the 8th row.
The table has A160644(n) integers in row n and starts
2,
6,.......[2,2]->6
12,14,..........[3,3]->12, [2,2,2]->14
24,26,30,...........[4,4]->24, [2,3,3]->26, [2,2,2,2] ->30
48,50,54,62, ....... [5,5]->48, [2,4,4]->50, [2,2,3,3]->54, [2,2,2,2,2]->62
56,60,96,98,102,110,126,.....[4,4,4]->56, [3,3,3,3]->60, [6,6]->96, [2,5,5]->98, [2,2,4,4]->102, [2,2,2,3,3]->110
104,108,114,122,192,194,198,206,222,254,...[4,5,5]->104, [3,3,4,4]->108, [2,4,4,4]->114, [2,3,3,3,3]->122
MAPLE
A125106m := proc(par) local c, dgs, p ; c := 1 ; dgs := [] ; for p in par do if p = c then dgs := [op(dgs), 1] ; else dgs := [op(dgs), seq(0, j=1..p-c), 1] ; fi; c := p ; od: add(op(i, dgs) *2^(i-1), i=1..nops(dgs)) ; end:
A161922 := proc(n) r := {} ; prts := combinat[partition](2*n) ; for p in prts do convert(p, set) intersect {1}; if % = {} then if nops(p) < 2 then ; elif op(-1, p) = op(-2, p) then r := r union {A125106m(p)} ; fi; fi; od: sort(r) ; end:
for n from 1 to 11 do A161922(n) ; od; # R. J. Mathar, Sep 11 2009
KEYWORD
nonn,tabf
AUTHOR
Alford Arnold, Jul 06 2009
EXTENSIONS
Detailed description and examples and rows n >= 8 completed by R. J. Mathar, Sep 11 2009
STATUS
approved
Bisect A053445 then calculate the first differences of the resulting sequence.
+0
4
0, 0, 0, 1, 1, 1, 4, 4, 6, 11, 15, 20, 33, 43, 60, 88, 119, 160, 226, 300, 404, 549, 727, 961, 1283, 1680, 2201, 2887, 3750, 4857, 6301, 8105, 10410, 13357, 17050, 21714, 27625, 34992, 44240, 55840, 70261, 88220, 110600, 138274, 172558, 214984, 267234
OFFSET
1,7
COMMENTS
a(n) counts the following subset of the partitions (cf. A000041): the number being partitioned is odd, the minimum part is two
and the three largest parts match.
First differences of A161921.
LINKS
EXAMPLE
A161921 begins: 0, 0, 1, 2, 3, 7, 11, 17, 28, 43, 63, 96, 139, 199, 287, 406, 566, ...
Therefore a(n) begins 0, 0, 0, 1, 1, 1, 4, 4, 6, ..., counting 333; 3332; 33322; 555, 4443, 333222, 33333; etc.
MATHEMATICA
Join[{0}, Differences[Take[Differences[Table[PartitionsP[n], {n, 0, 100}], 2], {2, -1, 2}]]] (* Harvey P. Dale, Sep 02 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, May 25 2009, Jun 20 2009
EXTENSIONS
Extended and edited by Nathaniel Johnston, Apr 30 2011
STATUS
approved
The bisection A053445(2n+1).
+0
4
0, 0, 0, 1, 2, 3, 7, 11, 17, 28, 43, 63, 96, 139, 199, 287, 406, 566, 792, 1092, 1496, 2045, 2772, 3733, 5016, 6696, 8897, 11784, 15534, 20391, 26692, 34797, 45207, 58564, 75614, 97328, 124953, 159945, 204185, 260025, 330286, 418506, 529106, 667380, 839938
OFFSET
0,5
LINKS
MATHEMATICA
Take[Differences[Table[PartitionsP[n], {n, 0, 100}], 2], {2, -1, 2}] (* Harvey P. Dale, Sep 02 2013 *)
CROSSREFS
Cf. A160644 (the other bisection), A160643 (first differences of a(n)).
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, Jul 05 2009
STATUS
approved
First differences of A160644.
+0
2
0, 1, 1, 1, 3, 3, 4, 8, 10, 13, 22, 28, 39, 58, 77, 104, 148, 197, 265, 363, 481, 638, 858, 1126, 1480, 1953, 2544, 3309, 4312, 5566, 7175, 9246, 11843, 15136, 19328, 24564, 31158, 39466, 49811, 62737, 78900, 98931, 123817, 154707, 192830, 239911, 298013
OFFSET
1,5
COMMENTS
Second differences count a subset of unrestricted partitions; cf. A160648.
LINKS
EXAMPLE
A160644 begins 1, 1, 2, 3, 4, 7, 10, 14, 22, 32, 45, 67, 95, 134, 192, ... so a(n) begins 0, 1, 1, 1, 3, 3, 4, 8, 10, 13, 22, 28, 39, 58, ...
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, May 24 2009
STATUS
approved
Second differences of sequence A160644.
+0
2
0, 1, 0, 0, 2, 0, 1, 4, 2, 3, 9, 6, 11, 19, 19, 27, 44, 49, 68, 98, 118, 157, 220, 268, 354, 473, 591, 765, 1003, 1254, 1609, 2071, 2597, 3293, 4192, 5236, 6594, 8308, 10345, 12926, 16163, 20031, 24886, 30890, 38123, 47081, 58102, 71381, 87704, 107643
OFFSET
1,5
COMMENTS
A160644 bisects sequence A053445 which counts unrestricted partitions such that the two largest values match and that no part is less than two.
Conjecture: a(n) counts unrestricted partitions of even numbers such that
the three largest values match and that, after "222", no part is less than three.
LINKS
EXAMPLE
a(n) begins 0 1 0 0 2 0 1 4 2 3 9 ... and counts 222; 444,3333;
666,5553,444433,333333; 5555,44444; 6664,55543,444433;
888,6666,7773,55554,66633,444444,555333,4443333,33333333; ...
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, May 25 2009
STATUS
approved

Search completed in 0.208 seconds