# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a160643 Showing 1-1 of 1 %I A160643 #7 Sep 02 2013 14:46:06 %S A160643 0,0,0,1,1,1,4,4,6,11,15,20,33,43,60,88,119,160,226,300,404,549,727, %T A160643 961,1283,1680,2201,2887,3750,4857,6301,8105,10410,13357,17050,21714, %U A160643 27625,34992,44240,55840,70261,88220,110600,138274,172558,214984,267234 %N A160643 Bisect A053445 then calculate the first differences of the resulting sequence. %C A160643 a(n) counts the following subset of the partitions (cf. A000041): the number being partitioned is odd, the minimum part is two %C A160643 and the three largest parts match. %C A160643 First differences of A161921. %H A160643 Nathaniel Johnston, Table of n, a(n) for n = 1..2500 %e A160643 A161921 begins: 0, 0, 1, 2, 3, 7, 11, 17, 28, 43, 63, 96, 139, 199, 287, 406, 566, ... %e A160643 Therefore a(n) begins 0, 0, 0, 1, 1, 1, 4, 4, 6, ..., counting 333; 3332; 33322; 555, 4443, 333222, 33333; etc. %t A160643 Join[{0},Differences[Take[Differences[Table[PartitionsP[n],{n,0,100}],2],{2,-1,2}]]] (* _Harvey P. Dale_, Sep 02 2013 *) %Y A160643 Cf. A053445, A160644. %K A160643 easy,nonn %O A160643 1,7 %A A160643 _Alford Arnold_, May 25 2009, Jun 20 2009 %E A160643 Extended and edited by _Nathaniel Johnston_, Apr 30 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE