[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a158830 -id:a158830
Displaying 1-3 of 3 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A158825 Square array of coefficients in the successive iterations of x*C(x) = (1-sqrt(1-4*x))/2 where C(x) is the g.f. of the Catalan numbers (A000108); read by antidiagonals. +10
24
1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 21, 14, 1, 5, 20, 54, 80, 42, 1, 6, 30, 110, 260, 322, 132, 1, 7, 42, 195, 640, 1310, 1348, 429, 1, 8, 56, 315, 1330, 3870, 6824, 5814, 1430, 1, 9, 72, 476, 2464, 9380, 24084, 36478, 25674, 4862, 1, 10, 90, 684, 4200, 19852, 67844, 153306, 199094, 115566, 16796 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
LINKS
Frédéric Chapoton and Vincent Pilaud, Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra, arXiv:2201.06896 [math.CO], 2022. See p. 26.
FORMULA
G.f. of column n = (g.f. of row n of A158830)/(1-x)^n.
Row k equals the first column of the k-th matrix power of Catalan triangle A033184; thus triangle A033184 transforms row n into row n+1 of this array (A158825). - Paul D. Hanna, Mar 30 2009
From G. C. Greubel, Apr 01 2021: (Start)
T(n, 1) = A000012(n), T(n, 2) = A000027(n).
T(n, 3) = A002378(n), T(n, 4) = A160378(n+1). (End)
EXAMPLE
Square array of coefficients in iterations of x*C(x) begins:
1, 1, 2, 5, 14, 42, 132, 429, 1430, ... A000108;
1, 2, 6, 21, 80, 322, 1348, 5814, 25674, ... A121988;
1, 3, 12, 54, 260, 1310, 6824, 36478, 199094, ... A158826;
1, 4, 20, 110, 640, 3870, 24084, 153306, 993978, ... A158827;
1, 5, 30, 195, 1330, 9380, 67844, 500619, 3755156, ... A158828;
1, 6, 42, 315, 2464, 19852, 163576, 1372196, 11682348, ...;
1, 7, 56, 476, 4200, 38052, 351792, 3305484, 31478628, ...;
1, 8, 72, 684, 6720, 67620, 693048, 7209036, 75915708, ...;
1, 9, 90, 945, 10230, 113190, 1273668, 14528217, 167607066, ...;
1, 10, 110, 1265, 14960, 180510, 2212188, 27454218, 344320262, ...;
1, 11, 132, 1650, 21164, 276562, 3666520, 49181418, 666200106, ...;
1, 12, 156, 2106, 29120, 409682, 5841836, 84218134, 1225314662, ...;
1, 13, 182, 2639, 39130, 589680, 8999172, 138755799, 2157976392, ...;
1, 14, 210, 3255, 51520, 827960, 13464752, 221101608, 3660331064, ...;
1, 15, 240, 3960, 66640, 1137640, 19640032, 342179672, 6007747368, ...;
1, 16, 272, 4760, 84864, 1533672, 28012464, 516105720, 9578580504, ...;
ILLUSTRATE ITERATIONS.
Let G(x) = x*C(x), then the first few iterations of G(x) are:
G(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + ...;
G(G(x)) = x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + ...;
G(G(G(x))) = x + 3*x^2 + 12*x^3 + 54*x^4 + 260*x^5 + ...;
G(G(G(G(x)))) = x + 4*x^2 + 20*x^3 + 110*x^4 + 640*x^5 + ...;
...
RELATED TRIANGLES.
The g.f. of column n is (g.f. of row n of A158830)/(1-x)^n
where triangle A158830 begins: 1;
1, 0;
2, 0, 0;
5, 1, 0, 0;
14, 10, 0, 0, 0;
42, 70, 8, 0, 0, 0;
132, 424, 160, 4, 0, 0, 0;
429, 2382, 1978, 250, 1, 0, 0, 0;
1430, 12804, 19508, 6276, 302, 0, 0, 0, 0;
4862, 66946, 168608, 106492, 15674, 298, 0, 0, 0, 0;
16796, 343772, 1337684, 1445208, 451948, 33148, 244, 0, 0, 0, 0;
58786, 1744314, 10003422, 16974314, 9459090, 1614906, 61806, 162, 0, 0, 0, 0;
...
Triangle A158835 transforms one diagonal into the next:
1;
1, 1;
4, 2, 1;
27, 11, 3, 1;
254, 94, 21, 4, 1;
3062, 1072, 217, 34, 5, 1;
45052, 15212, 2904, 412, 50, 6, 1;
783151, 257777, 47337, 6325, 695, 69, 7, 1; ...
so that:
where the diagonals start:
A158831 = [1, 1, 6, 54, 640, 9380, 163576, 3305484, ...];
A158832 = [1, 2, 12, 110, 1330, 19852, 351792, 7209036, ...];
A158833 = [1, 3, 20, 195, 2464, 38052, 693048, 14528217, ...];
A158834 = [1, 4, 30, 315, 4200, 67620, 1273668, 27454218, ...].
MATHEMATICA
Clear[row]; nmax = 12;
row[n_]:= row[n]= CoefficientList[Nest[(1-Sqrt[1-4#])/2&, x, n] + O[x]^(nmax+1), x] //Rest;
T[n_, k_]:= row[n][[k]];
Table[T[n-k+1, k], {n, nmax}, {k, n}]//Flatten (* Jean-François Alcover, Jul 13 2018, updated Aug 09 2018 *)
PROG
(PARI) {T(n, k)= local(F=serreverse(x-x^2+O(x^(k+2))), G=x);
for(i=1, n, G=subst(F, x, G)); polcoeff(G, k)}
CROSSREFS
Antidiagonal sums: A158829.
Related triangles: A158830, A158835.
Variant: A122888.
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 28 2009, Mar 29 2009
STATUS
approved
A122890 Triangle, read by rows, where the g.f. of row n divided by (1-x)^n yields the g.f. of column n in the triangle A122888, for n>=1. +10
7
1, 0, 1, 0, 0, 2, 0, 0, 1, 5, 0, 0, 0, 10, 14, 0, 0, 0, 8, 70, 42, 0, 0, 0, 4, 160, 424, 132, 0, 0, 0, 1, 250, 1978, 2382, 429, 0, 0, 0, 0, 302, 6276, 19508, 12804, 1430, 0, 0, 0, 0, 298, 15674, 106492, 168608, 66946, 4862, 0, 0, 0, 0, 244, 33148, 451948, 1445208, 1337684, 343772, 16796 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
Main diagonal forms the Catalan numbers (A000108). Row sums gives the factorials. In table A122888, row n lists the coefficients of x^k, k = 1..2^n, in the n-th self-composition of (x + x^2) for n >= 0.
Parker gave the following combinatorial interpretation of the numbers: For n > 0, T(n, j) is the number of sequences c_1c_2...c_n of positive integers such that 1 <= c_i <= i for each i in {1, 2, .., n} with exactly j - 1 values of i such that c_i <= c_{i+1}. - Peter Luschny, May 05 2013
LINKS
Toufik Mansour, Mark Shattuck, Statistics on bargraphs of inversion sequences of permutations, Discrete Math. Lett. (2020) Vol. 4, 42-49.
Toufik Mansour, Howard Skogman, Rebecca Smith, Passing through a stack k times, arXiv:1704.04288 [math.CO], 2017.
Susan Field Parker, The Combinatorics of Functional Composition and Inversion, Ph.D. Dissertation, Brandeis Univ. (1993) (Section 2.3.4, p. 27,28.)
FORMULA
From Paul D. Hanna, Apr 11 2009: (Start)
G.f. of row n: (1-x)^n*[g.f. of column n of A122888] where the g.f. of row n of A122888 is the n-th iteration of x+x^2.
Row-reversal forms triangle A158830 where g.f. of row n of A158830 = (1-x)^n*[g.f. of column n of A158825], and the g.f. of row n of array A158825 is the n-th iteration of x*C(x) and C(x) is the g.f. of the Catalan sequence A000108. (End)
EXAMPLE
Triangle begins:
1;
0,1;
0,0,2;
0,0,1,5;
0,0,0,10,14;
0,0,0,8,70,42;
0,0,0,4,160,424,132;
0,0,0,1,250,1978,2382,429;
0,0,0,0,302,6276,19508,12804,1430;
0,0,0,0,298,15674,106492,168608,66946,4862;
0,0,0,0,244,33148,451948,1445208,1337684,343772,16796;
0,0,0,0,162,61806,1614906,9459090,16974314,10003422,1744314,58786;
0,0,0,0,84,103932,5090124,51436848,161380816,180308420,71692452,8780912,208012; ...
Table A122888 starts:
1;
1, 1;
1, 2, 2, 1;
1, 3, 6, 9, 10, 8, 4, 1;
1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...;
where row n gives the g.f. of the n-th self-composition of (x+x^2).
From Paul D. Hanna, Apr 11 2009: (Start)
ROW-REVERSAL yields triangle A158830:
1;
1, 0;
2, 0, 0;
5, 1, 0, 0;
14, 10, 0, 0, 0;
42, 70, 8, 0, 0, 0;
132, 424, 160, 4, 0, 0, 0;
429, 2382, 1978, 250, 1, 0, 0, 0; ...
where
g.f. of row n of A158830 = (1-x)^n*[g.f. of column n of A158825];
g.f. of row n of A158825 = n-th iteration of x*Catalan(x).
RELATED ARRAY A158825 begins:
1,1,2,5,14,42,132,429,1430,4862,16796,58786,...;
1,2,6,21,80,322,1348,5814,25674,115566,528528,...;
1,3,12,54,260,1310,6824,36478,199094,1105478,...;
1,4,20,110,640,3870,24084,153306,993978,...;
1,5,30,195,1330,9380,67844,500619,3755156,...;
1,6,42,315,2464,19852,163576,1372196,11682348,...;
1,7,56,476,4200,38052,351792,3305484,31478628,...;
1,8,72,684,6720,67620,693048,7209036,75915708,...; ...
which consists of successive iterations of x*Catalan(x).
(End)
MATHEMATICA
nmax = 11;
f[0][x_] := x; f[n_][x_] := f[n][x] = f[n - 1][x + x^2] // Expand; T = Table[ SeriesCoefficient[f[n][x], {x, 0, k}], {n, 0, nmax}, {k, 1, nmax}];
row[n_] := CoefficientList[(1-x)^n*(T[[All, n]].x^Range[0, nmax])+O[x]^nmax, x];
Table[row[n], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Jul 13 2018 *)
CROSSREFS
Cf. A122888; A122891 (column sums); diagonals: A122892, A000108.
Cf. related tables: A158830, A158825. [Paul D. Hanna, Apr 11 2009]
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 18 2006
STATUS
approved
A308726 The number of permutations of length n and tier at most 1, that is, the number of permutations of length n sortable by two passes through a stack where outputting the longest prefix matching the identity permutation is prioritized. +10
0
1, 1, 2, 6, 24, 112, 556, 2811, 14234, 71808, 360568, 1803100, 8988924, 44719588, 222221416, 1103827306, 5484124128, 27265300504, 135695994964, 676228846370, 3374996253420, 16871826671280, 84488005896720, 423828619074900, 2129868537725916, 10722045181336524 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
This counts the permutations of length n that avoid the permutations 24153, 24513, 24531, 34251, 35241, 42513, 42531, 45231, 261453, 231564, 523164.
REFERENCES
Toufik Mansour, Howard Skogman, and Rebecca Smith. "Passing through a stack k times." Discrete Mathematics, Algorithms and Applications 11.01 (2019): 1950003.
LINKS
Toufik Mansour, Howard Skogman, and Rebecca Smith, Passing through a stack k times, arXiv:1704.04288 [math.CO], 2017-2018.
FORMULA
G.f.: (2 + (2*x-1)/sqrt(1-4*x) - sqrt(2*sqrt(1-4*x) - 1)) / (2*x). - Vaclav Kotesovec, Jun 30 2019
a(n) ~ 2^(4*n + 3/2) / (sqrt(Pi) * n^(3/2) * 3^(n + 1/2)). - Vaclav Kotesovec, Jun 30 2019
Conjecture: D-finite with recurrence: 3*n*(n-1)*(n+1)*a(n) -n*(n-1)*(67*n-101)*a(n-1) +2*(n-1)*(286*n^2-1112*n+1089)*a(n-2) +4*(-580*n^3+4200*n^2-10106*n+8049)*a(n-3) +24*(184*n^3-1784*n^2+5770*n-6221)*a(n-4) -96*(4*n-15)*(2*n-9)*(4*n-17)*a(n-5)=0. - R. J. Mathar, Jan 27 2020
MATHEMATICA
CoefficientList[Series[(2 + (2*x - 1)/Sqrt[1 - 4*x] - Sqrt[2*Sqrt[1 - 4*x] - 1])/(2*x), {x, 0, 25}], x] (* Vaclav Kotesovec, Jun 30 2019 *)
CROSSREFS
Cf. A122890 (sum of last two rows), A158830 (sum of first two rows).
KEYWORD
nonn
AUTHOR
Rebecca Smith, Jun 20 2019
EXTENSIONS
More terms from Vaclav Kotesovec, Jun 30 2019
STATUS
approved
page 1

Search completed in 0.008 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 07:09 EDT 2024. Contains 375532 sequences. (Running on oeis4.)