[go: up one dir, main page]

login
Revision History for A158825 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Square array of coefficients in the successive iterations of x*C(x) = (1-sqrt(1-4*x))/2 where C(x) is the g.f. of the Catalan numbers (A000108); read by antidiagonals.
(history; published version)
#16 by N. J. A. Sloane at Sat May 18 14:53:51 EDT 2024
STATUS

proposed

approved

#15 by Stefano Spezia at Sat May 18 04:52:24 EDT 2024
STATUS

editing

proposed

#14 by Stefano Spezia at Sat May 18 04:47:50 EDT 2024
LINKS

Paul D. Hanna, <a href="/A158825/b158825.txt">Table of n, a(n), n = 1..1275 (rows 1..50).</a>

Frédéric Chapoton and Vincent Pilaud, <a href="https://arxiv.org/abs/2201.06896">Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra</a>, arXiv:2201.06896 [math.CO], 2022. See p. 26.

FORMULA

Row k equals the first column of the k-th matrix power of Catalan triangle A033184; thus triangle A033184 transforms row n into row n+1 of this array (A158825). -_ _Paul D. Hanna_, Mar 30 2009

STATUS

approved

editing

#13 by N. J. A. Sloane at Thu Apr 01 14:38:06 EDT 2021
STATUS

proposed

approved

#12 by G. C. Greubel at Thu Apr 01 14:23:17 EDT 2021
STATUS

editing

proposed

#11 by G. C. Greubel at Thu Apr 01 14:22:48 EDT 2021
DATA

1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 21, 14, 1, 5, 20, 54, 80, 42, 1, 6, 30, 110, 260, 322, 132, 1, 7, 42, 195, 640, 1310, 1348, 429, 1, 8, 56, 315, 1330, 3870, 6824, 5814, 1430, 1, 9, 72, 476, 2464, 9380, 24084, 36478, 25674, 4862, 1, 10, 90, 684, 4200, 19852, 67844, 153306, 199094, 115566, 16796

FORMULA

G.f. of column n = [(g.f. of row n of A158830])/(1-x)^n.

Row k equals the first column of the k-th matrix power of Catalan triangle A033184; thus triangle A033184 transforms row n into row n+1 of this array (A158825). [From _-_Paul D. Hanna_, Mar 30 2009]

From G. C. Greubel, Apr 01 2021: (Start)

T(n, 1) = A000012(n), T(n, 2) = A000027(n).

T(n, 3) = A002378(n), T(n, 4) = A160378(n+1). (End)

EXAMPLE

1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,...;

1, 1, 2, 5, 14, 42, 132, 429, 1430, ... A000108;

1, 2, 6, 21, 80, 322, 1348, 5814, 25674,115566,528528,2449746,11485068, ... A121988;

1, 3, 12, 54, 260, 1310, 6824, 36478, 199094,1105478,6227712,35520498, ... A158826;

1, 4, 20, 110, 640, 3870, 24084, 153306, 993978,6544242,43652340, ... A158827;

1, 5, 30, 195, 1330, 9380, 67844, 500619, 3755156,28558484,219767968, ... A158828;

1, 6, 42, 315, 2464, 19852, 163576, 1372196, 11682348,100707972, ...;

1, 7, 56, 476, 4200, 38052, 351792, 3305484, 31478628,303208212, ...;

1, 8, 72, 684, 6720, 67620, 693048, 7209036, 75915708,807845676, ...;

1, 9, 90, 945, 10230, 113190, 1273668, 14528217, 167607066,1952409954, ...;

1, 10, 110, 1265, 14960, 180510, 2212188, 27454218, 344320262, ...;

1, 11, 132, 1650, 21164, 276562, 3666520, 49181418, 666200106, ...;

1, 12, 156, 2106, 29120, 409682, 5841836, 84218134, 1225314662, ...;

1, 13, 182, 2639, 39130, 589680, 8999172, 138755799, 2157976392, ...;

1, 14, 210, 3255, 51520, 827960, 13464752, 221101608, 3660331064, ...;

1, 15, 240, 3960, 66640, 1137640, 19640032, 342179672, 6007747368, ...;

1, 16, 272, 4760, 84864, 1533672, 28012464, 516105720, 9578580504, ...; ...

Let G(x) = x*C(x), then the first few iterations of G(x) are:

G(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 +...;

G(G(x)) = x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 +...;

G(G(G(x))) = x + 3*x^2 + 12*x^3 + 54*x^4 + 260*x^5 + ...;

G(G(G(G(x)))) = x + 4*x^2 + 20*x^3 + 110*x^4 + 640*x^5 + ...;

The g.f. of column n is [(g.f. of row n of A158830])/(1-x)^n

1, 0;

2, 0, 0;

5, 1, 0, 0;

14, 10, 0, 0, 0;

42, 70, 8, 0, 0, 0;

132, 424, 160, 4, 0, 0, 0;

429, 2382, 1978, 250, 1, 0, 0, 0;

1430, 12804, 19508, 6276, 302, 0, 0, 0, 0;

4862, 66946, 168608, 106492, 15674, 298, 0, 0, 0, 0;

16796, 343772, 1337684, 1445208, 451948, 33148, 244, 0, 0, 0, 0;

58786, 1744314, 10003422, 16974314, 9459090, 1614906, 61806, 162, 0, 0, 0, 0;

...

...

1;

1, 1;

4, 2, 1;

27, 11, 3, 1;

254, 94, 21, 4, 1;

3062, 1072, 217, 34, 5, 1;

45052, 15212, 2904, 412, 50, 6, 1;

783151, 257777, 47337, 6325, 695, 69, 7, 1; ...

A158835 * A158831 = A158832;

A158835 * A158832 = A158833;

A158835 * A158833 = A158834;

A158831 = [1, 1, 6, 54, 640, 9380, 163576, 3305484, ...];

A158832 = [1, 2, 12, 110, 1330, 19852, 351792, 7209036, ...];

A158833 = [1, 3, 20, 195, 2464, 38052, 693048, 14528217, ...];

A158834 = [1, 4, 30, 315, 4200, 67620, 1273668, 27454218, ...].

MATHEMATICA

Clear[row]; nmax = 12;

Clear[row]; row[n_] := row[n] = CoefficientList[Nest[(1-Sqrt[1-4#])/2&, x, n] + O[x]^(nmax+1), x] // Rest;

T[n_, k_] := row[n][[k]];

Table[T[n-k+1, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 13 2018, updated Aug 09 2018 *)

PROG

(PARI) {T(n, k)= local(F=serreverse(x-x^2+O(x^(k+2))), G=x); for(i=1, n, G=subst(F, x, G)); polcoeff(G, k)}

for(i=1, n, G=subst(F, x, G)); polcoeff(G, k)}

CROSSREFS

Cf. rowsRows: A000108, A121988, A158826, A158827, A158828; antidiagonal sums: A158829.

Cf. diagonalsColumns: A158831, A158832, A158833, A158834A000012, A000027, A002378, A160378.

Antidiagonal sums: A158829.

Diagonals: A158831, A158832, A158833, A158834.

Cf. related Related triangles: A158830, A158835, variant: A122888.

Variant: A122888.

STATUS

approved

editing

#10 by Bruno Berselli at Thu Aug 09 08:57:06 EDT 2018
STATUS

proposed

approved

#9 by Jean-François Alcover at Thu Aug 09 08:48:18 EDT 2018
STATUS

editing

proposed

#8 by Jean-François Alcover at Thu Aug 09 08:47:58 EDT 2018
MATHEMATICA

gClear[row]; row[x_n_] := Modulerow[{y}, Expandn] = CoefficientList[NormalNest[(1-Sqrt[1-4*y#])/2 &, x, n] + O[y]^(nmax+2)] /. y -> x][[1 ; ; ^(nmax+1]] ), x] // Rest;

T[n_, k_] := row[n][[k]];

T = Table[NestT[g, x, n] // CoefficientList[#, x-k+1, k]& // Rest, , {n, 1, nmax+}, {k, 1, n}]; // Flatten (* _Jean-François Alcover_, Jul 13 2018, updated Aug 09 2018 *)

Table[T[[n-k+1, k]], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 13 2018 *)

STATUS

approved

editing

#7 by Bruno Berselli at Fri Jul 13 04:08:53 EDT 2018
STATUS

proposed

approved