proposed
approved
proposed
approved
editing
proposed
Paul D. Hanna, <a href="/A158825/b158825.txt">Table of n, a(n), n = 1..1275 (rows 1..50).</a>
Frédéric Chapoton and Vincent Pilaud, <a href="https://arxiv.org/abs/2201.06896">Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra</a>, arXiv:2201.06896 [math.CO], 2022. See p. 26.
approved
editing
proposed
approved
editing
proposed
1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 21, 14, 1, 5, 20, 54, 80, 42, 1, 6, 30, 110, 260, 322, 132, 1, 7, 42, 195, 640, 1310, 1348, 429, 1, 8, 56, 315, 1330, 3870, 6824, 5814, 1430, 1, 9, 72, 476, 2464, 9380, 24084, 36478, 25674, 4862, 1, 10, 90, 684, 4200, 19852, 67844, 153306, 199094, 115566, 16796
G.f. of column n = [(g.f. of row n of A158830])/(1-x)^n.
Row k equals the first column of the k-th matrix power of Catalan triangle A033184; thus triangle A033184 transforms row n into row n+1 of this array (A158825). [From _-_Paul D. Hanna_, Mar 30 2009]
From G. C. Greubel, Apr 01 2021: (Start)
1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,...;
1, 1, 2, 5, 14, 42, 132, 429, 1430, ... A000108;
1, 2, 6, 21, 80, 322, 1348, 5814, 25674,115566,528528,2449746,11485068, ... A121988;
1, 3, 12, 54, 260, 1310, 6824, 36478, 199094,1105478,6227712,35520498, ... A158826;
1, 4, 20, 110, 640, 3870, 24084, 153306, 993978,6544242,43652340, ... A158827;
1, 5, 30, 195, 1330, 9380, 67844, 500619, 3755156,28558484,219767968, ... A158828;
1, 6, 42, 315, 2464, 19852, 163576, 1372196, 11682348,100707972, ...;
1, 7, 56, 476, 4200, 38052, 351792, 3305484, 31478628,303208212, ...;
1, 8, 72, 684, 6720, 67620, 693048, 7209036, 75915708,807845676, ...;
1, 9, 90, 945, 10230, 113190, 1273668, 14528217, 167607066,1952409954, ...;
1, 10, 110, 1265, 14960, 180510, 2212188, 27454218, 344320262, ...;
1, 11, 132, 1650, 21164, 276562, 3666520, 49181418, 666200106, ...;
1, 12, 156, 2106, 29120, 409682, 5841836, 84218134, 1225314662, ...;
1, 13, 182, 2639, 39130, 589680, 8999172, 138755799, 2157976392, ...;
1, 14, 210, 3255, 51520, 827960, 13464752, 221101608, 3660331064, ...;
1, 15, 240, 3960, 66640, 1137640, 19640032, 342179672, 6007747368, ...;
1, 16, 272, 4760, 84864, 1533672, 28012464, 516105720, 9578580504, ...; ...
Let G(x) = x*C(x), then the first few iterations of G(x) are:
G(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 +...;
G(G(x)) = x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 +...;
G(G(G(x))) = x + 3*x^2 + 12*x^3 + 54*x^4 + 260*x^5 + ...;
G(G(G(G(x)))) = x + 4*x^2 + 20*x^3 + 110*x^4 + 640*x^5 + ...;
The g.f. of column n is [(g.f. of row n of A158830])/(1-x)^n
1, 0;
2, 0, 0;
5, 1, 0, 0;
14, 10, 0, 0, 0;
42, 70, 8, 0, 0, 0;
132, 424, 160, 4, 0, 0, 0;
429, 2382, 1978, 250, 1, 0, 0, 0;
1430, 12804, 19508, 6276, 302, 0, 0, 0, 0;
4862, 66946, 168608, 106492, 15674, 298, 0, 0, 0, 0;
16796, 343772, 1337684, 1445208, 451948, 33148, 244, 0, 0, 0, 0;
58786, 1744314, 10003422, 16974314, 9459090, 1614906, 61806, 162, 0, 0, 0, 0;
...
...
1;
1, 1;
4, 2, 1;
27, 11, 3, 1;
254, 94, 21, 4, 1;
3062, 1072, 217, 34, 5, 1;
45052, 15212, 2904, 412, 50, 6, 1;
783151, 257777, 47337, 6325, 695, 69, 7, 1; ...
A158831 = [1, 1, 6, 54, 640, 9380, 163576, 3305484, ...];
A158832 = [1, 2, 12, 110, 1330, 19852, 351792, 7209036, ...];
A158833 = [1, 3, 20, 195, 2464, 38052, 693048, 14528217, ...];
A158834 = [1, 4, 30, 315, 4200, 67620, 1273668, 27454218, ...].
Clear[row]; nmax = 12;
Clear[row]; row[n_] := row[n] = CoefficientList[Nest[(1-Sqrt[1-4#])/2&, x, n] + O[x]^(nmax+1), x] // Rest;
T[n_, k_] := row[n][[k]];
Table[T[n-k+1, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 13 2018, updated Aug 09 2018 *)
(PARI) {T(n, k)= local(F=serreverse(x-x^2+O(x^(k+2))), G=x); for(i=1, n, G=subst(F, x, G)); polcoeff(G, k)}
for(i=1, n, G=subst(F, x, G)); polcoeff(G, k)}
Cf. rowsRows: A000108, A121988, A158826, A158827, A158828; antidiagonal sums: A158829.
Cf. diagonalsColumns: A158831, A158832, A158833, A158834A000012, A000027, A002378, A160378.
Antidiagonal sums: A158829.
Diagonals: A158831, A158832, A158833, A158834.
Cf. related Related triangles: A158830, A158835, variant: A122888.
Variant: A122888.
approved
editing
proposed
approved
editing
proposed
gClear[row]; row[x_n_] := Modulerow[{y}, Expandn] = CoefficientList[NormalNest[(1-Sqrt[1-4*y#])/2 &, x, n] + O[y]^(nmax+2)] /. y -> x][[1 ; ; ^(nmax+1]] ), x] // Rest;
T[n_, k_] := row[n][[k]];
T = Table[NestT[g, x, n] // CoefficientList[#, x-k+1, k]& // Rest, , {n, 1, nmax+}, {k, 1, n}]; // Flatten (* _Jean-François Alcover_, Jul 13 2018, updated Aug 09 2018 *)
Table[T[[n-k+1, k]], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 13 2018 *)
approved
editing
proposed
approved