[go: up one dir, main page]

login
A158831
A diagonal in the array A158825 of coefficients of successive iterations of x*C(x), where C(x) is the Catalan function (A000108).
10
1, 1, 6, 54, 640, 9380, 163576, 3305484, 75915708, 1952409954, 55573310936, 1734182983962, 58863621238500, 2159006675844616, 85088103159523296, 3585740237981536700, 160894462797493581048, 7658326127259130753070
OFFSET
1,3
COMMENTS
Triangle A158835 transforms this sequence into A158832, the next diagonal in A158825.
EXAMPLE
Table of coefficients in the i-th iteration of x*Catalan(x):
(1);
1,(1),2,5,14,42,132,429,1430,4862,16796,58786,208012,...;
1,2,(6),21,80,322,1348,5814,25674,115566,528528,2449746,...;
1,3,12,(54),260,1310,6824,36478,199094,1105478,6227712,...;
1,4,20,110,(640),3870,24084,153306,993978,6544242,43652340,...;
1,5,30,195,1330,(9380),67844,500619,3755156,28558484,...;
1,6,42,315,2464,19852,(163576),1372196,11682348,100707972,...;
1,7,56,476,4200,38052,351792,(3305484),31478628,303208212,...;
1,8,72,684,6720,67620,693048,7209036,(75915708),807845676,...;
1,9,90,945,10230,113190,1273668,14528217,167607066,(1952409954),...; ...
where terms in parenthesis form the initial terms of this sequence.
MATHEMATICA
nmax = 18;
g[x_] := Module[{y}, Expand[Normal[(1 - Sqrt[1 - 4*y])/2 + O[y]^(nmax+2)] /. y -> x][[1 ;; nmax+1]]];
T = Table[Nest[g, x, n] // CoefficientList[#, x]& // Rest, {n, 1, nmax+1}];
Prepend[Diagonal[T, 1], 1] (* Jean-François Alcover, Jul 13 2018 *)
PROG
(PARI) {a(n)=local(F=serreverse(x-x^2+O(x^(n+2))), G=x); for(i=1, n-1, G=subst(F, x, G)); polcoeff(G, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 28 2009
STATUS
approved