[go: up one dir, main page]

login
A034001
One third of triple factorial numbers.
15
1, 6, 54, 648, 9720, 174960, 3674160, 88179840, 2380855680, 71425670400, 2357047123200, 84853696435200, 3309294160972800, 138990354760857600, 6254565964238592000, 300219166283452416000, 15311177480456073216000
OFFSET
1,2
LINKS
Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order, Vol. 21 (2004), pp. 83-89; arXiv preprint, arXiv:math/0307064 [math.CO], 2003.
FORMULA
3*a(n) = (3*n)!!! = Product_{j=1..n} 3*j = 3^n*n!.
E.g.f.: (-1 + 1/(1-3*x))/3.
E.g.f.: 1/(1-3*x)^2. - Paul Barry, Sep 14 2004. For offset 0. - Wolfdieter Lang, Apr 06 2017
D-finite with recurrence a(n) - 3*n*a(n-1) = 0. - R. J. Mathar, Dec 02 2012
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*(exp(1/3)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(1-exp(-1/3)). (End)
MAPLE
G(x):=(1-3*x)^(n-3): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1], x) od:x:=0:seq(f[n], n=0..16); # Zerinvary Lajos, Apr 04 2009
MATHEMATICA
terms = 17;
CoefficientList[1/(1-3x)^2 + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Jul 28 2018 *)
Table[3^(n-1)*n!, {n, 20}] (* G. C. Greubel, Aug 15 2019 *)
PROG
(GAP) List([1..20], n->3^(n-1)*Factorial(n)); # Muniru A Asiru, Jul 28 2018
(PARI) vector(20, n, 3^(n-1)*n!) \\ G. C. Greubel, Aug 15 2019
(Magma) [3^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Aug 15 2019
(Sage) [3^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019
CROSSREFS
Sequence in context: A367475 A081132 A158831 * A084062 A292633 A357309
KEYWORD
easy,nonn
STATUS
approved