[go: up one dir, main page]

login
Search: a136748 -id:a136748
     Sort: relevance | references | number | modified | created      Format: long | short | data
Product t2(q^d); d | 3, where t2 = theta2(q) / (2 * q^(1/4)).
+10
39
1, 1, 0, 2, 1, 0, 2, 0, 0, 2, 2, 0, 1, 1, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 3, 0, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 0, 4, 2, 0, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 0, 1, 0, 0, 2, 2, 0, 4, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 2, 0
OFFSET
0,4
COMMENTS
Number of solutions of 8*n + 4 = x^2 + 3*y^2 in positive odd integers. - Michael Somos, Sep 18 2004
Half the number of integer solutions of 4*n + 2 = x^2 + y^2 + z^2 where 0 = x + y + z and x and y are odd. - Michael Somos, Jul 03 2011
Given g.f. A(x), then q^(1/2) * 2 * A(q) is denoted phi_1(z) where q = exp(Pi i z) in Conway and Sloane.
Half of theta series of planar hexagonal lattice (A2) with respect to an edge.
Bisection of A002324. Number of ways of writing n as a sum of a triangular plus three times a triangular number [Hirschhorn]. - R. J. Mathar, Mar 23 2011
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
REFERENCES
Burce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 223 Entry 3(i).
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 1999, p. 103. See Eq. (13).
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.27).
LINKS
Michael D. Hirschhorn, Three classical results on representations of a number, Sem. Lotharingien de Combinat. S42 (1999), B42f.
Michael D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of q^(-1/2) * (eta(q^2) * eta(q^6))^2 / (eta(q) * eta(q^3)) in powers of q. - Michael Somos, Apr 18 2004
Expansion of q^(-1) * (a(q) - a(q^4)) / 6 in powers of q^2 where a() is a cubic AGM theta function. - Michael Somos, Oct 24 2006
Expansion of psi(x) * psi(x^3) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jul 03 2011
Euler transform of period 6 sequence [ 1, -1, 2, -1, 1, -2, ...]. - Michael Somos, Apr 18 2004
From Michael Somos, Sep 18 2004: (Start)
Given g.f. A(x), then B(x) = (x * A(x^2))^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 + 4*u*v*w + 16*v*w^2 - 8*w*v^2 - w*u^2.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if p==5 (mod 6) otherwise b(p^e) = e+1. (Clarification: the g.f. A(x) is not the primary function of interest, but rather B(x) = x * A(x^2), which is an eta-quotient and is the generating function of a multiplicative sequence.)
G.f.: (Sum_{j>0} x^((j^2 - j) / 2)) * (Sum_{k>0} x^(3(k^2 - k) / 2)) = Product_{k>0} (1 + x^k) * (1 - x^(2*k)) * (1 + x^(3*k)) * (1 - x^(6*k)).
G.f.: Sum_{k>=0} a(k) * x^(2*k + 1) = Sum_{k>0} x^k * (1 - x^k) * (1 - x^(4*k)) * (1 - x^(5*k)) / (1 - x^(12*k)). (End)
G.f.: s(4)^2*s(12)^2/(s(2)*s(6)), where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]
G.f.: Sum_{k>=0} a(k) * x^(2*k + 1) = Sum_{k>0} x^k / (1 + x^k + x^(2*k)) - x^(4*k) / (1 + x^(4*k) + x^(8*k)). - Michael Somos, Nov 04 2005
a(n) = A002324(2*n + 1) = A035178(2*n + 1) = A091393(2*n + 1) = A093829(2*n + 1) = A096936(2*n + 1) = A112298(2*n + 1) = A113447(2*n + 1) = A113661(2*n + 1) = A113974(2*n + 1) = A115979(2*n + 1) = A122860(2*n + 1) = A123331(2*n + 1) = A123484(2*n + 1) = A136748(2*n + 1) = A137608(2*n + 1). A005881(n) = 2*a(n).
6 * a(n) = A004016(6*n + 3). - Michael Somos, Mar 06 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 23 2023
EXAMPLE
G.f. = 1 + x + 2*x^3 + x^4 + 2*x^6 + 2*x^9 + 2*x^10 + x^12 + x^13 + 2*x^15 + ...
G.f. = q + q^3 + 2*q^7 + q^9 + 2*q^13 + 2*q^19 + 2*q^21 + q^25 + q^27 + 2*q^31 + ...
a(6) = 2 since 8*6 + 4 = 52 = 5^2 + 3*3^2 = 7^2 + 3*1^2.
MATHEMATICA
a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, Mod[(3 - #)/2, 3, -1] &]]; (* Michael Somos, Jul 03 2011 *)
QP = QPochhammer; s = (QP[q^2]*QP[q^6])^2/(QP[q]*QP[q^3]) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
a[ n_] := If[ n < 1, Boole[n == 0], Times @@ (Which[# < 2, 0^#2, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger@(2 n + 1))]; (* Michael Somos, Mar 06 2016 *)
%t A033762 a[ n_] := SeriesCoefficient[ (1/4) x^(-1/2) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(3/2)], {x, 0, n}]; (* Michael Somos, Mar 06 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^2 / (eta(x + A) * eta(x^3 + A)), n))}; /* Michael Somos, Sep 18 2004 */
(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, kronecker( -12, d) * (n / d % 2)))}; /* Michael Somos, Nov 04 2005 */
(PARI) {a(n) = if( n<0, 0, n = 8*n + 4; sum( j=1, sqrtint( n\3), (j%2) * issquare(n - 3*j^2)))} /* Michael Somos, Nov 04 2005 */
(PARI) {a(n) = if( n<0, 0, sumdiv(2*n + 1, d, kronecker(-3, d)))}; /* Michael Somos, Mar 06 2016 */
(Magma) A := Basis( ModularForms( Gamma1(12), 1), 202); A[2] + A[4]; /* Michael Somos, Jul 25 2014 */
KEYWORD
nonn
EXTENSIONS
Corrected by Charles R Greathouse IV, Sep 02 2009
STATUS
approved
Expansion of eta(q)^2 * eta(q^6)^4 * eta(q^8) * eta(q^24) / (eta(q^2) * eta(q^3) * eta(q^12))^2 in powers of q.
+10
10
1, -2, 1, 0, 0, -2, 2, 0, 1, 0, 0, 0, 2, -4, 0, 0, 0, -2, 2, 0, 2, 0, 0, 0, 1, -4, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, -4, 2, 0, 0, -4, 2, 0, 0, 0, 0, 0, 3, -2, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 2, -4, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, -4, 1, 0, 0, -4, 2, 0, 1, 0, 0, 0, 0, -4, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, -6, 0, 0, 0, 0, 2, 0, 0
OFFSET
1,2
COMMENTS
Expansion of (a(q) - 2 * a(q^2) - a(q^4) + 2*a(q^8)) / 6 in powers of q where a() is a cubic AGM function.
LINKS
FORMULA
Euler transform of period 24 sequence [ -2, 0, 0, 0, -2, -2, -2, -1, 0, 0, -2, 0, -2, 0, 0, -1, -2, -2, -2, 0, 0, 0, -2, -2, ...].
Moebius transform is period 24 sequence [ 1, -3, 0, 2, -1, 0, 1, 0, 0, 3, -1, 0, 1, -3, 0, 0, -1, 0, 1, -2, 0, 3, -1, 0, ...].
a(n) is multiplicative with a(2) = -2, a(2^e) = 0 if e>1, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 12^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A136748.
G.f.: x * Product_{k>0} (1 -x^(6*k)) * (1 - x^k + x^(2*k))^2 * (1 - x^(8*k)) * (1 + x^(12*k)) / (1 + x^(6*k)).
a(4*n) = a(6*n + 4) = a(6*n + 5) = 0. a(3*n) = a(n).
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Jan 22 2024
EXAMPLE
q - 2*q^2 + q^3 - 2*q^6 + 2*q^7 + q^9 + 2*q^13 - 4*q^14 - 2*q^18 + ...
MATHEMATICA
QP = QPochhammer; s = QP[x]^2*QP[x^6]^4*QP[x^8]*(QP[x^24]/(QP[x^2]*QP[x^3]* QP[x^12])^2) + O[x]^105; CoefficientList[s, x] (* Jean-François Alcover, Nov 06 2015, adapted from PARI, updated Dec 06 2015 *)
PROG
(PARI) {a(n)=if(n<1, 0, sumdiv(n, d, if(d%2, 1, d/2%2*-2)*kronecker(-12, n/d)))}
(PARI) {a(n)=local(A, p, e); if(n<1, 0, A=factor(n); prod( k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, -2*(e<2), if(p==3, 1, if(p%6==1, e+1, !(e%2)))))))}
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A)^4 * eta(x^8 + A) * eta(x^24 + A) / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A))^2, n))}
CROSSREFS
A033762(n) = a(2*n+1). A112604(n) = a(4*n+1). -2 * A033762(n) = a(4*n+2). A112605(n) = a(4*n+3). A097195(n) = a(6*n+1). A112606(n) = a(8*n+1). -2 * A112604(n) = a(8*n+2). A112608(n) = a(8*n+3). 2 * A112607(n) = a(8*n+5). -2 * A112605(n) = a(8*n+6). 2 * A112609(n) = a(8*n+7).
A123884(n) = a(12*n+1). 2 * A121361(n) = a(12*n+7). A131961(n) = a(24*n+1). 2 * A131962(n) = a(24*n+7). A112608(n) = a(24*n+9). 2 * A131963(n) = a(24*n+13). 2 * A131964(n) = a(24*n+19).
KEYWORD
sign,mult
AUTHOR
Michael Somos, Sep 28 2006, Apr 04 2008
STATUS
approved

Search completed in 0.005 seconds