[go: up one dir, main page]

login
Search: a126587 -id:a126587
     Sort: relevance | references | number | modified | created      Format: long | short | data
Odd terms in A186423.
+10
11
1, 3, 11, 17, 33, 43, 67, 81, 113, 131, 171, 193, 241, 267, 323, 353, 417, 451, 523, 561, 641, 683, 771, 817, 913, 963, 1067, 1121, 1233, 1291, 1411, 1473, 1601, 1667, 1803, 1873, 2017, 2091, 2243, 2321, 2481, 2563, 2731, 2817, 2993, 3083, 3267, 3361, 3553, 3651
OFFSET
0,2
COMMENTS
Sum of odd square and half of even square. - Vladimir Joseph Stephan Orlovsky, May 20 2011
Numbers m such that 6*m-2 is a square. - Bruno Berselli, Apr 29 2016
FORMULA
G.f.: ( -1-2*x-6*x^2-2*x^3-x^4 ) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Feb 28 2011
a(n) = 3*(1+2*n+2*n^2)/4 + (-1)^n*(1+2*n)/4. - R. J. Mathar, Feb 28 2011
a(n+2) = a(n) + A091999(n+2).
Union of A080859 and A126587: a(2*n) = A080859(n) and a(2*n+1) = A126587(n+1).
From Peter Bala, Feb 13 2021: (Start)
Appears to be the sequence of exponents in the following series expansion:
Sum_{n >= 0} (-1)^n * x^n/Product_{k = 1..n} 1 - x^(2*k-1) = 1 - x - x^3 + x^11 + x^17 - x^33 - x^43 + + - - .... Cf. A053253.
More generally, for nonnegative integer N, we appear to have the identity
Product_{j = 1..N} 1/(1 + x^(2*j-1))*( P(N,x) + Sum_{n >= 1} (-1)^n * x^((2*N+1)*n-N)/Product_{k = 1..n} 1 - x^(2*k-1) ) = 1 - x - x^3 + x^11 + x^17 - x^33 - x^43 + + - - ..., where P(N,x) is a polynomial in x of degree N^2 - 1, with the first few values given empirically by
P(0,x) = 0, P(1,x) = 1, P(2,x) = 1 - x^2 + x^3, P(3,x) = 1 - x^2 + x^5 - x^7 + x^8 and P(4,x) = 1 - x^2 - x^4 + x^5 + x^8 - x^9 + x^12 - x^14 + x^15. Cf. A203568. (End)
E.g.f.: ((2 + 5*x + 3*x^2)*cosh(x) + (1 + 7*x + 3*x^2)*sinh(x))/2. - Stefano Spezia, May 08 2021
MATHEMATICA
Table[If[OddQ[n], n^2+((n+1)^2)/2, (n^2)/2+(n+1)^2], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, May 20 2011 *)
PROG
(Haskell)
a186424 n = a186424_list !! n
a186424_list = filter odd a186423_list
(Python)
def A186424(n): return (n*(3*n + 2) + 1 if n&1 else n*(3*n + 4) + 2)>>1 # Chai Wah Wu, Jan 31 2023
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 21 2011
STATUS
approved
Irregular triangle read by rows in which row n lists 2n-1 copies of 2n-1 and n copies of 2n, for n >= 1.
+10
8
1, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14
OFFSET
1,2
COMMENTS
Sequence of successive positive integers k in which if k is odd then k appears k times, otherwise if k is even then k appears k/2 times.
Note that an arrangement of the blocks of this sequence shows the growth of the generalized pentagonal numbers A001318 (see example).
The sums of each block give the positive integers of A129194: 1, 2, 9, 8, 25, 18, 49,...
Partial sums of A080995. - Paolo P. Lava, Aug 23 2011.
Concatenations of rows of triangles A001650 and A111650; also, seen as a flat list, the row lengths of triangle A260672 and the first differences of its row sums (cf. A260706). - Reinhard Zumkeller, Nov 17 2015
Also a(n) = number of squares in the arithmetic progression {24k + 1: 0 <= k <= n-1} [Granville]. - N. J. A. Sloane, Dec 13 2017
LINKS
Andrew Granville, Squares in arithmetic progressions and infinitely many primes, arXiv:1708.06951 [math.NT], 2017.
Andrew Granville, Squares in arithmetic progressions and infinitely many primes, The American Mathematical Monthly, 124.10 (2017): 951-954. See p. 952.
FORMULA
a(n) = sqrt(8n/3) plus or minus 1 [Granville] - N. J. A. Sloane, Dec 13 2017
If 8 <= n <= 52, then a(n-1) < a(n) if and only if n is in A221672. - Jonathan Sondow, Dec 14 2017
EXAMPLE
a) If written as a triangle the initial rows are
1, 2,
3, 3, 3, 4, 4,
5, 5, 5, 5, 5, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10,
...
Row sums give A126587.
b) An application using the blocks of this sequence: the illustration of the growth of an arrangement which represents the generalized pentagonal numbers A001318. For example; the first 9 positive initial terms: 1, 2, 5, 7, 12, 15, 22, 26, 35.
.
. 9
. 8 9
. 8 7 9
. 8 6 7 9
. 8 6 5 7 9
. 6 4 5 7 9
. 4 3 5 7 9
. 2 3 5 7 9
. 1 3 5 7 9
...
MATHEMATICA
Array[Join @@ MapIndexed[ConstantArray[#, #/(1 + Boole[First@ #2 == 2])] &, {2 # - 1, 2 #}] &, 7] // Flatten (* or *)
Table[If[k <= 2 n - 1, 2 n - 1, 2 n], {n, 7}, {k, 3 n - 1}] // Flatten (* Michael De Vlieger, Dec 14 2017 *)
PROG
(Haskell)
a193832 n k = a193832_tabf !! (n-1) !! (k-1)
a193832_row n = a193832_tabf !! (n-1)
a193832_tabf = zipWith (++) a001650_tabf a111650_tabl
a193832' n = a193832_list !! (n - 1)
a193832_list = concat a193832_tabf
-- Reinhard Zumkeller, Nov 15 2015
KEYWORD
nonn,easy,tabf
AUTHOR
Omar E. Pol, Aug 22 2011
EXTENSIONS
Edited by N. J. A. Sloane, Dec 13 2017
STATUS
approved
a(n) = 5*n^2 - 4*n + 1.
+10
7
1, 2, 13, 34, 65, 106, 157, 218, 289, 370, 461, 562, 673, 794, 925, 1066, 1217, 1378, 1549, 1730, 1921, 2122, 2333, 2554, 2785, 3026, 3277, 3538, 3809, 4090, 4381, 4682, 4993, 5314, 5645, 5986, 6337, 6698, 7069, 7450, 7841, 8242, 8653, 9074
OFFSET
0,2
COMMENTS
For n >= 2, hypotenuses of primitive Pythagorean triangles with m = 2*n-1, where the sides of the triangle are a = m^2 - n^2, b = 2*n*m, c = m^2 + n^2; this sequence is the c values, short sides (a) are A045944(n-1), and long sides (b) are A002939(n).
FORMULA
From Harvey P. Dale, May 24 2011: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=2, a(2)=13.
G.f.: (1 - x + 10*x^2)/(1-x)^3. (End)
E.g.f.: (1 + x + 5*x^2)*exp(x). - G. C. Greubel, Dec 03 2023
MATHEMATICA
Table[5*n^2 - 4*n + 1, {n, 0, 100}]
LinearRecurrence[{3, -3, 1}, {1, 2, 13}, 100] (* or *) CoefficientList[ Series[ (-10 x^2+x-1)/(x-1)^3, {x, 0, 100}], x] (* Harvey P. Dale, May 24 2011 *)
PROG
(Magma) [5*n^2 - 4*n + 1: n in [0..50]]; // Vincenzo Librandi, Jun 19 2011
(PARI) a(n)=5*n^2-4*n+1 \\ Charles R Greathouse IV, Oct 16 2015
(SageMath) [5*n^2-4*n+1 for n in range(41)] # G. C. Greubel, Dec 03 2023
CROSSREFS
Short sides (a) A045944(n-1), long sides (b) A002939(n).
Cf. A017281 (first differences), A051624 (a(n)-1), A202141.
Sequences of the form m*n^2 - 4*n + 1: -A131098 (m=0), A028872 (m=1), A056220 (m=2), A045944 (m=3), A016754 (m=4), this sequence (m=5), A126587 (m=6), A339623 (m=7), A080856 (m=8).
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Franklin T. Adams-Watters, May 20 2011
STATUS
approved
The number of different classes of 2-dimensional convex lattice polytopes having volume n/2 up to unimodular equivalence.
+10
6
1, 2, 3, 7, 6, 13, 13, 27, 26, 44, 43, 83, 81, 122, 136, 208, 215, 317, 341, 490, 542, 710, 778, 1073, 1186, 1519, 1708, 2178, 2405, 3042, 3408, 4247, 4785, 5782, 6438, 7870, 8833, 10560, 11857, 14131, 15733, 18636, 20773, 24381, 27353, 31764, 35284, 41081, 45791, 52762
OFFSET
1,2
COMMENTS
Lattice polytopes up to the equivalence relation used here are also called toric diagrams, see references below. - Andrey Zabolotskiy, May 10 2019
Liu & Zong give a(7) = 11, and others use their list, but their list lacks polygons No. 3 and 4 from Balletti's file 2-polytopes/v7.txt. - Andrey Zabolotskiy, Dec 28 2021
LINKS
Gabriele Balletti, Dataset of "small" lattice polytopes. Beware that the vertices are not always listed in sorted order around the polygon boundary (clockwise or counterclockwise).
Gabriele Balletti, Enumeration of lattice polytopes by their volume, Discrete Comput. Geom., 65 (2021), 1087-1122; arXiv:1103.0103 [math.CO], 2018.
Sebastián Franco, Yang-Hui He, Chuang Sun and Yan Xiao, A comprehensive survey of brane tilings, Int. J. Mod. Phys. A, 32 (2017), 1750142, arXiv:1702.03958 [hep-th], 2017.
Heling Liu and Chuanming Zong, On the classification of convex lattice polytopes, Adv. Geom., 11 (2011), 711-729, arXiv:1103.0103 [math.MG], 2011. See table at p. 8.
Yan Xiao, Quivers, Tilings and Branes, City, University of London, 2018. See Tables 3.2-3.7.
CROSSREFS
Cf. A126587, A003051 (triangles only), A322343, A366409.
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Mar 01 2011
EXTENSIONS
a(8) from Yan Xiao added by Andrey Zabolotskiy, May 10 2019
Name edited, a(7) corrected, a(9)-a(50) added using Balletti's data by Andrey Zabolotskiy, Dec 28 2021
STATUS
approved
a(n) = floor((3*n + 2)^2/24 + 1/3).
+10
5
0, 1, 3, 5, 8, 12, 17, 22, 28, 35, 43, 51, 60, 70, 81, 92, 104, 117, 131, 145, 160, 176, 193, 210, 228, 247, 267, 287, 308, 330, 353, 376, 400, 425, 451, 477, 504, 532, 561, 590, 620, 651, 683, 715, 748, 782, 817, 852, 888, 925, 963
OFFSET
0,3
COMMENTS
List of quadruples: 2*n*(3*n+1), (2*n+1)*(3*n+1), 6*n^2+8*n+3, (n+1)*(6*n+5). These terms belong to the sequences A033580, A033570, A126587 and A049452, respectively. See links for all the permutations.
After 0, subsequence of A025767.
It seems that a(n) is the smallest number of cells that need to be painted in a (n+1) X (n+1) grid, such that it has no unpainted hexominoes (see link to Kamenetsky and Pratt). - Rob Pratt, Dmitry Kamenetsky, Aug 30 2020
LINKS
Luce ETIENNE, Permutations
Dmitry Kamenetsky and Rob Pratt, 10x10 grid with no unpainted hexominoes, Puzzling StackExchange, October 2019.
FORMULA
G.f.: x*(1 + x + x^3)/((1 + x)*(1 + x^2)*(1 - x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>5.
a(n) = floor((3*n + 2)^2/24 + 2/3).
a(n) = (6*n^2 + 8*n + 3 + (-1)^n - 2*((-1)^((2*n - 1 + (-1)^n)/4) + (-1)^((2*n + 1 - (-1)^n)/4)))/16. Therefore:
a(2*k) = (6*k^2 + 4*k + 1 - (-1)^k)/4,
a(2*k+1) = (k + 1)*(3*k + 2)/2.
a(n) = (6*n^2 + 8*n + 3 + cos(n*Pi) - 4*cos(n*Pi/2))/16.
a(n) = (3*n + 2)^2/24 + 1/3 + (-6 + (1 + (-1)^n)*(1 + 2*i^((n+1)*(n+2))))/16, where i=sqrt(-1).
a(n) = A130519(n+3)+A130519(n+2)+A130519(n). - R. J. Mathar, Jun 23 2021
EXAMPLE
Rectangular array with four columns:
. 0, 1, 3, 5;
. 8, 12, 17, 22;
. 28, 35, 43, 51;
. 60, 70, 81, 92;
. 104, 117, 131, 145, etc.
From Rob Pratt, Aug 30 2020: (Start)
For n = 3, painting only 2 cells would leave an unpainted hexomino, but painting the following 3 cells avoids all unpainted hexominoes:
. . .
. . X
X X .
(End)
MATHEMATICA
Table[Floor[(3 n + 2)^2/24 + 1/3], {n, 0, 50}] (* or *) CoefficientList[Series[x (1 + x + x^3)/((1 + x) (1 + x^2) (1 - x)^3), {x, 0, 50}], x] (* or *) Table[(6 n^2 + 8 n + 3 + Cos[n Pi] - 4 Cos[n Pi/2])/16, {n, 0, 50}] (* or *) Table[(3 n + 2)^2/24 + 1/3 + (-6 + (1 + (-1)^n) (1 + 2 I^((n + 1) (n + 2))))/16, {n, 0, 50}] (* Michael De Vlieger, Feb 17 2017 *)
LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 1, 3, 5, 8, 12}, 60] (* Harvey P. Dale, Aug 10 2024 *)
PROG
(PARI) a(n)=(3*n^2 + 4*n + 4)\8 \\ Charles R Greathouse IV, Feb 17 2017
(Magma) [(3*n^2+4*n+4) div 8: n in [0..50]]; // Bruno Berselli, Feb 17 2017
CROSSREFS
Cf. A033436: floor((3*n)^2/24 + 1/3).
Cf. A130519.
Minimum number of painted cells in other n-ominoes: A337501, A337502, A337503.
KEYWORD
nonn,easy
AUTHOR
Luce ETIENNE, Feb 17 2017
EXTENSIONS
Corrected and extended by Bruno Berselli, Feb 17 2017
STATUS
approved
Four-column table read by rows: row n is the unique primitive Pythagorean quadruple (a,b,c,d) such that a < (a + b + c - d)/2 = 2n(n + 1) and b = c.
+10
2
1, 12, 12, 17, 7, 30, 30, 43, 17, 56, 56, 81, 31, 90, 90, 131, 49, 132, 132, 193, 71, 182, 182, 267, 97, 240, 240, 353, 127, 306, 306, 451, 161, 380, 380, 561, 199, 462, 462, 683, 241, 552, 552, 817, 287, 650, 650, 963, 337, 756, 756, 1121, 391, 870, 870, 1291, 449, 992, 992, 1473
OFFSET
2,2
COMMENTS
A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer.
REFERENCES
Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
LINKS
Miguel-Ángel Pérez García-Ortega, Teorema 10.12
FORMULA
Row n = (a, b, c, d) = (2n^2 - 1, 4n^2 + 6n + 2, 4n^2 + 6n + 2, 6n^2 + 8n + 3).
EXAMPLE
Table begins:
n=1: 1, 12, 12, 17;
n=2: 7, 30, 30, 43;
n=3: 17, 56, 56, 81;
n=4: 31, 90, 90, 131;
n=5: 49, 132, 132, 193;
MATHEMATICA
cuaternas={}; Do[cuaternas=Join[cuaternas, {2n^2-1, 4n^2+6n+2, 4n^2+6n+2, 6n^2+8n+3}], {n, 1, 35}]; cuaternas
CROSSREFS
Cf. A372220, A056220 (first column), A002939 (second column), A126587 (fourth column).
KEYWORD
nonn,easy,tabf
STATUS
approved
Array T(j,k) of counts of internal lattice points within all Pythagorean triangles (see comments for array order).
+10
1
3, 22, 17, 49, 103, 43, 69, 217, 244, 81, 156, 305, 505, 445, 131, 187, 671, 709, 913, 706, 193, 190, 793, 1546, 1281, 1441, 1027, 267, 295, 799, 1819, 2781, 2021, 2089, 1408, 353, 465, 1249, 1828, 3265, 4376, 2929, 2857, 1849, 451, 498, 1937, 2863, 3277, 5131, 6331, 4005, 3745, 2350, 561
OFFSET
1,1
COMMENTS
The array of counts of internal lattice points within all Pythagorean triangles T(j,k) is arranged so that its first column is the ordered counts of internal lattice points within the k-th primitive Pythagorean triangle (PPT) A225414(k) and the j-th column is j multiples of these PPT side lengths.
Let the k-th PPT have integer perpendicular sides a, b then its j-th multiple has area A = j^2*a*b/2 and the count of lattice points intersected by its boundary is B = j*(a+b+1) by the application of Pick's theorem the count of internal lattice points within it is I = (j^2*a*b-j*(a+b+1)+2)/2.
EXAMPLE
Array begins
3, 17, 43, 81, 131, ...
22, 103, 244, 445, ...
49, 217, 505, ...
69, 305, ...
156, ...
MATHEMATICA
getpairs[k_] := Reverse[Select[IntegerPartitions[k, {2}], GCD[#[[1]], #[[2]]]==1 &]]; getpptpairs[j_] := (newlist=getpairs[j]; Table[{(newlist[[m]][[1]]^2-newlist[[m]][[2]]^2-1)(2newlist[[m]][[1]]*newlist[[m]][[2]]-1)/2, newlist[[m]][[1]]^2-newlist[[m]][[2]]^2, 2newlist[[m]][[1]]*newlist[[m]][[2]]}, {m, 1, Length[newlist]}]); lexicographicLattice[{dim_, maxHeight_}] := Flatten[Array[Sort@Flatten[(Permutations[#1] &) /@ IntegerPartitions[#1 +dim-1, {dim}], 1] &, maxHeight], 1]; array[{x_, y_}] := (pptpair=table[[y]]; (x^2*pptpair[[2]]*pptpair[[3]])/2-x(pptpair[[2]]+pptpair[[3]]+1)/2+1); maxterms=20; table=Sort[Flatten[Table[getpptpairs[2p+1], {p, 1, maxterms}], 1]][[1;; maxterms]]; pairs=lexicographicLattice[{2, maxterms}]; Table[array[pairs[[n]]], {n, 1, maxterms(maxterms+1)/2}]
CROSSREFS
Cf. A126587 (first row), A225414 (first column).
KEYWORD
nonn,tabl
AUTHOR
Frank M Jackson, May 23 2013
STATUS
approved
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), a(0)=1, a(1)=5, a(2)=9, a(3)=21, a(4)=29.
+10
1
1, 5, 9, 21, 29, 49, 61, 89, 105, 141, 161, 205, 229, 281, 309, 369, 401, 469, 505, 581, 621, 705, 749, 841, 889, 989, 1041, 1149, 1205, 1321, 1381, 1505, 1569, 1701, 1769, 1909, 1981, 2129, 2205, 2361
OFFSET
0,2
COMMENTS
The two bisections A136392(n+1)=1,9,29,61, ... and A201279(n)=5,21,49, ... are in the hexagonal spiral based on 2*n+1:
.
67--65--63--61
/ \
69 33--31--29 59
/ / \ \
71 35 11---9 27 57
/ / / \ \ \
73 37 13 1 7 25 55
/ / / / / /
39 15 3---5 23 53
\ \ / /
41 17--19--21 51
\ /
43--45--47--49
.
A201279(n) - A136892(n) = 20*n.
FORMULA
a(2*n) = A136392(n+1), a(2*n+1) = A201279(n).
a(-n) = a(n).
a(2*n) + a(2*n+1) = 6*A001844(n).
a(n) = (6*n^2 + 6*n + 5 - (2*n + 1)*(-1)^n)/4. - Wesley Ivan Hurt, Oct 04 2018
G.f.: (1 + x^2)*(1 + 4*x + x^2) / ((1 - x)^3*(1 + x)^2). - Colin Barker, Jun 05 2019
a(n) = A104585(n) + A032766(n+1). - Alex W. Nowak, Jan 08 2021
MATHEMATICA
Table[(6 n^2 + 6 n + 5 - (2 n + 1)*(-1)^n)/4, {n, 0, 80}] (* Wesley Ivan Hurt, Jan 07 2021 *)
PROG
(PARI) Vec((1 + x^2)*(1 + 4*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^50)) \\ Colin Barker, Jun 05 2019
(Magma) [(6*n^2 + 6*n + 5 - (2*n + 1)*(-1)^n)/4 : n in [0..50]]; // Wesley Ivan Hurt, Jan 19 2021
CROSSREFS
Cf. A001844.
In the spiral: A003154(n+1), A080859, A126587, A136392, A201279, A227776.
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 18 2018
STATUS
approved
Dimension of the space of weight 2n cusp forms for Gamma_0( 30 ).
+10
0
3, 14, 26, 38, 50, 62, 74, 86, 98, 110, 122, 134, 146, 158, 170, 182, 194, 206, 218, 230, 242, 254, 266, 278, 290, 302, 314, 326, 338, 350, 362, 374, 386, 398, 410, 422, 434, 446, 458, 470, 482, 494, 506, 518, 530, 542, 554, 566, 578, 590
OFFSET
1,1
FORMULA
Conjectures from Colin Barker, Jun 09 2019: (Start)
G.f.: x*(3 + 8*x + x^2) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>3.
a(n) = 2*(6*n-5) for n>1.
(End)
CROSSREFS
Conjectured first differences of A126587.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 08 2001
STATUS
approved

Search completed in 0.009 seconds