[go: up one dir, main page]

login
A226028
Array T(j,k) of counts of internal lattice points within all Pythagorean triangles (see comments for array order).
1
3, 22, 17, 49, 103, 43, 69, 217, 244, 81, 156, 305, 505, 445, 131, 187, 671, 709, 913, 706, 193, 190, 793, 1546, 1281, 1441, 1027, 267, 295, 799, 1819, 2781, 2021, 2089, 1408, 353, 465, 1249, 1828, 3265, 4376, 2929, 2857, 1849, 451, 498, 1937, 2863, 3277, 5131, 6331, 4005, 3745, 2350, 561
OFFSET
1,1
COMMENTS
The array of counts of internal lattice points within all Pythagorean triangles T(j,k) is arranged so that its first column is the ordered counts of internal lattice points within the k-th primitive Pythagorean triangle (PPT) A225414(k) and the j-th column is j multiples of these PPT side lengths.
Let the k-th PPT have integer perpendicular sides a, b then its j-th multiple has area A = j^2*a*b/2 and the count of lattice points intersected by its boundary is B = j*(a+b+1) by the application of Pick's theorem the count of internal lattice points within it is I = (j^2*a*b-j*(a+b+1)+2)/2.
EXAMPLE
Array begins
3, 17, 43, 81, 131, ...
22, 103, 244, 445, ...
49, 217, 505, ...
69, 305, ...
156, ...
MATHEMATICA
getpairs[k_] := Reverse[Select[IntegerPartitions[k, {2}], GCD[#[[1]], #[[2]]]==1 &]]; getpptpairs[j_] := (newlist=getpairs[j]; Table[{(newlist[[m]][[1]]^2-newlist[[m]][[2]]^2-1)(2newlist[[m]][[1]]*newlist[[m]][[2]]-1)/2, newlist[[m]][[1]]^2-newlist[[m]][[2]]^2, 2newlist[[m]][[1]]*newlist[[m]][[2]]}, {m, 1, Length[newlist]}]); lexicographicLattice[{dim_, maxHeight_}] := Flatten[Array[Sort@Flatten[(Permutations[#1] &) /@ IntegerPartitions[#1 +dim-1, {dim}], 1] &, maxHeight], 1]; array[{x_, y_}] := (pptpair=table[[y]]; (x^2*pptpair[[2]]*pptpair[[3]])/2-x(pptpair[[2]]+pptpair[[3]]+1)/2+1); maxterms=20; table=Sort[Flatten[Table[getpptpairs[2p+1], {p, 1, maxterms}], 1]][[1;; maxterms]]; pairs=lexicographicLattice[{2, maxterms}]; Table[array[pairs[[n]]], {n, 1, maxterms(maxterms+1)/2}]
CROSSREFS
Cf. A126587 (first row), A225414 (first column).
Sequence in context: A100977 A364163 A037101 * A248626 A360366 A072398
KEYWORD
nonn,tabl
AUTHOR
Frank M Jackson, May 23 2013
STATUS
approved