[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a108541 -id:a108541
Displaying 1-9 of 9 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A107768 Integers p*q*r such that p*q and q*r are both golden semiprimes (A108540). Integers p*q*r such that p = A108541(j), q = A108542(j) = A108541(k) and r = A108542(k). +20
3
30, 1309, 50209, 299423, 4329769, 4661471, 13968601, 19867823, 49402237, 90419171, 95575609, 230236057, 289003081, 4195692049, 7752275351, 8857002097, 9759031489, 10956612769, 12930672109, 12991059409, 13494943703, 13807499677, 15195694009, 18253659551, 20769940297 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Golden 3-almost primes.
Volumes of bricks (rectangular parallelepipeds) each of whose faces has golden semiprime area. How long a chain is possible of the form p(1) * p(2) * p(3) * ... * p(n) where each successive pair of values are factors of a golden semiprime? That is, if Zumkeller's golden semiprimes are the 2-dimensional case and the present sequence is the 3-dimensional case, is there a maximum n for an n-dimensional case?
LINKS
EXAMPLE
30 = 2 * 3 * 5, where both 2*3=6 and 3*5=15 are golden semiprimes.
1309 = 7 * 11 * 17.
50209 = 23 * 37 * 59.
MATHEMATICA
f[p_] := Module[{x = GoldenRatio * p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]]; g[p_] := Module[{ p1 = f[p]}, If[p1 == 0, 0, p2 = f[p1]; If[p2 == 0, 0, p*p1*p2]]]; seq={}; p=1; Do[p = NextPrime[p]; gp = g[p]; If[gp > 0, AppendTo[seq, gp]], {300}]; seq (* Amiram Eldar, Nov 29 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jun 11 2005
EXTENSIONS
More terms from Amiram Eldar, Nov 29 2019
STATUS
approved
A001358 Semiprimes (or biprimes): products of two primes.
(Formerly M3274 N1323)
+10
1731
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Numbers of the form p*q where p and q are primes, not necessarily distinct.
These numbers are sometimes called semi-primes or 2-almost primes. In this database the official spelling is "semiprime", not "semi-prime".
Numbers n such that Omega(n) = 2 where Omega(n) = A001222(n) is the sum of the exponents in the prime decomposition of n.
Complement of A100959; A064911(a(n)) = 1. - Reinhard Zumkeller, Nov 22 2004
The graph of this sequence appears to be a straight line with slope 4. However, the asymptotic formula shows that the linearity is an illusion and in fact a(n)/n ~ log(n)/log(log(n)) goes to infinity. See also the graph of A066265 = number of semiprimes < 10^n.
For numbers between 33 and 15495, semiprimes are more plentiful than any other k-almost prime. See A125149.
Numbers that are divisible by exactly 2 prime powers (not including 1). - Jason Kimberley, Oct 02 2011
The (disjoint) union of A006881 and A001248. - Jason Kimberley, Nov 11 2015
An equivalent definition of this sequence is a'(n) = smallest composite number which is not divided by any smaller composite number a'(1),...,a'(n-1). - Meir-Simchah Panzer, Jun 22 2016
The above characterization can be simplified to "Composite numbers not divisible by a smaller term." This shows that this is the equivalent of primes computed via Eratosthenes's sieve, but starting with the set of composite numbers (i.e., complement of 1 union primes) instead of all positive integers > 1. It's easy to see that iterating the method (using Eratosthenes's sieve each time on the remaining numbers, complement of the previously computed set) yields numbers with bigomega = k for k = 0, 1, 2, 3, ..., i.e., {1}, A000040, this, A014612, etc. - M. F. Hasler, Apr 24 2019
REFERENCES
Archimedeans Problems Drive, Eureka, 17 (1954), 8.
Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 60.
Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Teubner, Leipzig; third edition: Chelsea, New York (1974). See p. 211.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..20000 (first 10000 terms from T. D. Noe)
Daniel A. Goldston, Sidney W. Graham, János Pintz and Cem Y. Yildirim, Small gaps between primes or almost primes, Transactions of the American Mathematical Society, Vol. 361, No. 10 (2009), pp. 5285-5330, arXiv preprint, arXiv:math/0506067 [math.NT], 2005.
Sh. T. Ishmukhametov and F. F. Sharifullina, On distribution of semiprime numbers, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, No. 8, pp. 53-59. English translation, Russian Mathematics, Vol. 58, No. 8 (2014), pp. 43-48, alternative link.
Donovan Johnson, Jonathan Vos Post, and Robert G. Wilson v, Selected n and a(n). (2.5 MB)
Dixon Jones, Quickie 593, Mathematics Magazine, Vol. 47, No. 3, May 1974, p. 167.
Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1 and vol. 2, Leipzig, Berlin, B. G. Teubner, 1909. See Vol. 1, p. 211.
Xianmeng Meng, On sums of three integers with a fixed number of prime factors, Journal of Number Theory, Vol. 114, No. 1 (2005), pp. 37-65.
Michael Penn, What makes a number "good"?, YouTube video, 2022.
Eric Weisstein's World of Mathematics, Semiprime.
Eric Weisstein's World of Mathematics, Almost Prime.
Wikipedia, Almost prime.
FORMULA
a(n) ~ n*log(n)/log(log(n)) as n -> infinity [Landau, p. 211], [Ayoub].
Recurrence: a(1) = 4; for n > 1, a(n) = smallest composite number which is not a multiple of any of the previous terms. - Amarnath Murthy, Nov 10 2002
A174956(a(n)) = n. - Reinhard Zumkeller, Apr 03 2010
a(n) = A088707(n) - 1. - Reinhard Zumkeller, Feb 20 2012
Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 + P(2*s)), where P is the prime zeta function. - Enrique Pérez Herrero, Jun 24 2012
sigma(a(n)) + phi(a(n)) - mu(a(n)) = 2*a(n) + 1. mu(a(n)) = ceiling(sqrt(a(n))) - floor(sqrt(a(n))). - Wesley Ivan Hurt, May 21 2013
mu(a(n)) = -Omega(a(n)) + omega(a(n)) + 1, where mu is the Moebius function (A008683), Omega is the count of prime factors with repetition, and omega is the count of distinct prime factors. - Alonso del Arte, May 09 2014
a(n) = A078840(2,n). - R. J. Mathar, Jan 30 2019
A100484 UNION A046315. - R. J. Mathar, Apr 19 2023
EXAMPLE
From Gus Wiseman, May 27 2021: (Start)
The sequence of terms together with their prime factors begins:
4 = 2*2 46 = 2*23 91 = 7*13 141 = 3*47
6 = 2*3 49 = 7*7 93 = 3*31 142 = 2*71
9 = 3*3 51 = 3*17 94 = 2*47 143 = 11*13
10 = 2*5 55 = 5*11 95 = 5*19 145 = 5*29
14 = 2*7 57 = 3*19 106 = 2*53 146 = 2*73
15 = 3*5 58 = 2*29 111 = 3*37 155 = 5*31
21 = 3*7 62 = 2*31 115 = 5*23 158 = 2*79
22 = 2*11 65 = 5*13 118 = 2*59 159 = 3*53
25 = 5*5 69 = 3*23 119 = 7*17 161 = 7*23
26 = 2*13 74 = 2*37 121 = 11*11 166 = 2*83
33 = 3*11 77 = 7*11 122 = 2*61 169 = 13*13
34 = 2*17 82 = 2*41 123 = 3*41 177 = 3*59
35 = 5*7 85 = 5*17 129 = 3*43 178 = 2*89
38 = 2*19 86 = 2*43 133 = 7*19 183 = 3*61
39 = 3*13 87 = 3*29 134 = 2*67 185 = 5*37
(End)
MAPLE
A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc:
seq(A001358(n), n=1..120) ; # R. J. Mathar, Aug 12 2010
MATHEMATICA
Select[Range[200], Plus@@Last/@FactorInteger[#] == 2 &] (* Zak Seidov, Jun 14 2005 *)
Select[Range[200], PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 17 2011 *)
PROG
(PARI) select( isA001358(n)={bigomega(n)==2}, [1..199]) \\ M. F. Hasler, Apr 09 2008; added select() Apr 24 2019
(PARI) list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, listput(v, t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 11 2011
(PARI) A1358=List(4); A001358(n)={while(#A1358<n, my(t=A1358[#A1358]); until(bigomega(t++)==2, ); listput(A1358, t)); A1358[n]} \\ M. F. Hasler, Apr 24 2019
(Haskell)
a001358 n = a001358_list !! (n-1)
a001358_list = filter ((== 2) . a001222) [1..]
(Magma) [n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Bruno Berselli, Sep 09 2015
(Python)
from sympy import factorint
def ok(n): return sum(factorint(n).values()) == 2
print([k for k in range(1, 190) if ok(k)]) # Michael S. Branicky, Apr 30 2022
(Python)
from math import isqrt
from sympy import primepi, prime
def A001358(n):
def f(x): return int(n+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Jul 23 2024
CROSSREFS
Cf. A064911 (characteristic function).
Cf. A048623, A048639, A000040 (primes), A014612 (products of 3 primes), A014613, A014614, A072000 ("pi" for semiprimes), A065516 (first differences).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r=1), this sequence (r=2), A014612 (r=3), A014613 (r=4), A014614 (r=5), A046306 (r=6), A046308 (r=7), A046310 (r=8), A046312 (r=9), A046314 (r=10), A069272 (r=11), A069273 (r=12), A069274 (r=13), A069275 (r=14), A069276 (r=15), A069277 (r=16), A069278 (r=17), A069279 (r=18), A069280 (r=19), A069281 (r=20).
These are the Heinz numbers of length-2 partitions, counted by A004526.
The squarefree case is A006881 with odd/even terms A046388/A100484 (except 4).
Including primes gives A037143.
The odd/even terms are A046315/A100484.
Partial sums are A062198.
The prime factors are A084126/A084127.
Grouping by greater factor gives A087112.
The product/sum/difference of prime indices is A087794/A176504/A176506.
Positions of even/odd terms are A115392/A289182.
The terms with relatively prime/divisible prime indices are A300912/A318990.
Factorizations using these terms are counted by A320655.
The prime indices are A338898/A338912/A338913.
Grouping by weight (sum of prime indices) gives A338904, with row sums A024697.
The terms with even/odd weight are A338906/A338907.
The terms with odd/even prime indices are A338910/A338911.
The least/greatest term of weight n is A339114/A339115.
KEYWORD
nonn,easy,nice,core
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Aug 22 2000
STATUS
approved
A084126 Prime factor <= other prime factor of n-th semiprime. +10
37
2, 2, 3, 2, 2, 3, 3, 2, 5, 2, 3, 2, 5, 2, 3, 2, 7, 3, 5, 3, 2, 2, 5, 3, 2, 7, 2, 5, 2, 3, 7, 3, 2, 5, 2, 3, 5, 2, 7, 11, 2, 3, 3, 7, 2, 3, 2, 11, 5, 2, 5, 2, 3, 7, 2, 13, 3, 2, 3, 5, 11, 2, 3, 2, 7, 5, 2, 11, 3, 2, 5, 7, 2, 3, 13, 2, 5, 3, 13, 3, 11, 2, 7, 2, 5, 3, 2, 2, 7, 17, 3, 5, 2, 13, 7, 2, 3, 5, 3, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Lesser of the prime factors of A001358(n). - Jianing Song, Aug 05 2022
LINKS
Eric Weisstein's World of Mathematics, Semiprime
FORMULA
a(n) = A020639(A001358(n)).
a(n) = A001358(n)/A006530(A001358(n)). [corrected by Michel Marcus, Jul 18 2020]
a(n) = A001358(n)/A084127(n).
MATHEMATICA
FactorInteger[#][[1, 1]]&/@Select[Range[500], PrimeOmega[#]==2&] (* Harvey P. Dale, Jun 25 2018 *)
PROG
(Haskell)
a084126 = a020639 . a001358 -- Reinhard Zumkeller, Nov 25 2012
CROSSREFS
Cf. A001358 (the semiprimes), A084127 (greater of the prime factors of the semiprimes).
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 15 2003
STATUS
approved
A108540 Golden semiprimes: a(n)=p*q and abs(p*phi-q)<1, where phi = golden ratio = (1+sqrt(5))/2. +10
17
6, 15, 77, 187, 589, 851, 1363, 2183, 2747, 7303, 10033, 15229, 16463, 17201, 18511, 27641, 35909, 42869, 45257, 53033, 60409, 83309, 93749, 118969, 124373, 129331, 156433, 201563, 217631, 232327, 237077, 255271, 270349, 283663, 303533, 326423 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Eric Weisstein's World of Mathematics, Golden Ratio
Eric Weisstein's World of Mathematics, Semiprime
FORMULA
a(n) = A108541(n)*A108542(n) = A000040(k)*A108539(k) for some k.
EXAMPLE
589 = 19*31 and abs(19*phi - 31) = abs(30,7426... - 31) < 1, therefore 589 is a term.
MATHEMATICA
f[p_] := Module[{x = GoldenRatio * p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]]; seq = {}; p=1; Do[p = NextPrime[p]; q = f[p]; If[q > 0, AppendTo[seq, p*q]], {100}]; seq (* Amiram Eldar, Nov 28 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 09 2005; revised Jun 13 2005
EXTENSIONS
Corrected by T. D. Noe, Oct 25 2006
STATUS
approved
A108542 Greater prime factor of n-th golden semiprime. +10
11
3, 5, 11, 17, 31, 37, 47, 59, 67, 109, 127, 157, 163, 167, 173, 211, 241, 263, 271, 293, 313, 367, 389, 439, 449, 457, 503, 571, 593, 613, 619, 643, 661, 677, 701, 727, 739, 787, 823, 911, 983, 991, 1021, 1069, 1163, 1187, 1231, 1289, 1381, 1429, 1487, 1523 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
abs(phi*A108541(n) - a(n)) < 1, where phi = golden ratio = (1+sqrt(5))/2.
LINKS
FORMULA
a(n) = A108540(n)/A108541(n).
MATHEMATICA
f[p_] := Module[{x = GoldenRatio * p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]]; seq = {}; p=1; Do[p = NextPrime[p]; q = f[p]; If[q > 0, AppendTo[seq, q]], {200}]; seq (* Amiram Eldar, Nov 28 2019 *)
CROSSREFS
Subsequence of A108539.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 09 2005
STATUS
approved
A108543 Primes that are factors of golden semiprimes (A108540). +10
5
2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 37, 41, 47, 59, 67, 79, 97, 101, 103, 107, 109, 127, 131, 149, 157, 163, 167, 173, 181, 193, 211, 227, 241, 263, 271, 277, 283, 293, 311, 313, 353, 367, 379, 383, 389, 397, 409, 419, 433, 439, 449, 457, 487, 503, 509, 563, 571 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
CROSSREFS
Union of A108541 and A108542.
Complement of A108545.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 09 2005
EXTENSIONS
Corrected by T. D. Noe, Oct 25 2006
STATUS
approved
A108544 Primes that are factors of distinct golden semiprimes (A108540). +10
5
3, 11, 37, 67, 163, 167, 241, 271, 367, 449, 457, 613, 661, 1613, 1979, 2069, 2137, 2221, 2347, 2351, 2381, 2399, 2477, 2633, 2749, 2837, 3011, 3449, 3593, 3671, 3797, 3911, 3943, 4001, 4049, 4079, 4241, 4999, 5147, 5261, 5711, 5981, 6337, 6379, 6619 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
CROSSREFS
Intersection of A108541 and A108542.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 09 2005
STATUS
approved
A165571 Lesser prime factor of successively better golden semiprimes. +10
5
2, 3, 7, 19, 23, 29, 97, 353, 563, 631, 919, 1453, 2207, 15271, 15737, 42797, 49939, 133559, 179317, 287557, 508451, 918011, 1103483, 1981891, 9181097, 16958611, 17351447, 52204391, 66602803, 99641617, 134887397, 487195147, 629449511, 943818943, 1527963169, 2048029369 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
See A165569 and A165570 for the definition. Probably a subset of A108541.
LINKS
FORMULA
a(n) = A000040(A165569(n)).
a(n) = A165570(n)/A165572(n).
MATHEMATICA
f[p_] := Module[{x = GoldenRatio * p, p1, p2}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; If[p2 - x > x - p1, p1, p2]]; seq={}; dm = 1; p1 = 1; Do[p1 = NextPrime[p1]; k++; p2 = f[p1]; d = Abs[p2/p1 - GoldenRatio]; If[d < dm, dm = d; AppendTo[seq, p1]], {10^4}]; seq (* Amiram Eldar, Nov 28 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 22 2009
EXTENSIONS
a(16)-a(23) from Donovan Johnson, May 13 2010
a(24)-a(36) from Amiram Eldar, Nov 28 2019
STATUS
approved
A330092 The least prime that starts a chain of exactly n primes such that the product of each successive pair is a golden semiprime (A108540). +10
0
5, 3, 2, 103, 2437, 6991, 455033, 252492571, 8276659373, 18749113741 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The question of the existence of arbitrary long chains of such primes was asked by Jonathan Vos Post in A107768.
Such chains may be called "golden chains of primes". They are analogous to Cunningham chains: this sequence is analogous to A005602, as A108541 is analogous to A005384.
LINKS
EXAMPLE
a(1) = 5 since 5 is not a lesser prime of a golden semiprime, i.e., it is not in A108541.
a(2) = 3 since 3 * 5 is a golden semiprime.
a(3) = 2 since {2, 3, 5} is a chain of 3 primes such that 2 * 3 and 3 * 5 are golden semiprimes.
MATHEMATICA
goldPrime[p_] := Module[{x = GoldenRatio*p}, p1 = NextPrime[x, -1]; p2 = NextPrime[p1]; q = If[x - p1 < p2 - x, p1, p2]; If[Abs[q - x] < 1, q, 0]];
goldChainLength[p_] := -1 + Length @ NestWhileList[goldPrime, p, # > 0 &];
max = 7; seq = Table[0, {max}]; count = 0; p = 1; While[count < max, p = NextPrime[p]; i = goldChainLength[p]; If[i <= max && seq[[i]] < 1, count++; seq[[i]] = p]]; seq
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Dec 01 2019
STATUS
approved
page 1

Search completed in 0.009 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 00:57 EDT 2024. Contains 375520 sequences. (Running on oeis4.)