[go: up one dir, main page]

login
Search: a086617 -id:a086617
     Sort: relevance | references | number | modified | created      Format: long | short | data
Diagonal sums of the number triangle associated to A086617.
+20
2
1, 1, 2, 3, 5, 8, 14, 24, 43, 78, 144, 269, 509, 971, 1868, 3618, 7049, 13805, 27162, 53661, 106405, 211697, 422458, 845386, 1696017, 3410522, 6873060, 13878721, 28077439, 56900936, 115501012, 234807488, 478032437, 974507543, 1989123814
OFFSET
0,3
COMMENTS
The triangle associated to A086617 is given by T(n,k)=if(k<=n, sum{j=0..n-k, C(n-k,j)C(k,j)C(j)},0). A050253(n)=A108296(n+2)-A108296(n).
FORMULA
G.f.: (1-x^2-sqrt(1-2*x^2-4*x^3-3*x^4))/(2*x^3*(1-x^2)).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-2*k} binomial(n-2*k, j)*binomial(k, j) * A000108(j).
Conjecture: (n+3)*a(n) +(-n-2)*a(n-1) +2*(-n-1)*a(n-2) +2*(-n+3)*a(n-3) +(n+1)*a(n-4) +3*(n-2)*a(n-5)=0. - R. J. Mathar, Nov 16 2012
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 31 2005
STATUS
approved
Antidiagonal sums of triangle A086614.
+10
19
1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, 3562, 9360, 24871, 66706, 180340, 490912, 1344379, 3701158, 10237540, 28436824, 79288843, 221836402, 622599625, 1752360040, 4945087837, 13988490338, 39658308814, 112666081616
OFFSET
0,2
COMMENTS
Partial sums of the Motzkin sequence (A001006). - Emeric Deutsch, Jul 12 2004
a(n) is the number of distinct ordered trees obtained by branch-reducing the ordered trees on n+1 edges. - David Callan, Oct 24 2004
a(n) is the number of consecutive horizontal steps at height 0 of all Motzkin paths from (0,0) to (n,0) starting with a horizontal step. - Charles Moore (chamoore(AT)howard.edu), Apr 15 2007
This sequence (with offset 1 instead of 0) occurs in Section 7 of K. Grygiel, P. Lescanne (2015), see g.f. N. - N. J. A. Sloane, Nov 09 2015
Also number of plain (untyped) normal forms of lambda-terms (terms that cannot be further beta-reduced.) [Bendkowski et al., 2016]. - N. J. A. Sloane, Nov 22 2017
If interpreted with offset 2, the INVERT transform is A002026 with offset 1. - R. J. Mathar, Nov 02 2021
LINKS
Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
Maciej Bendkowski, K. Grygiel, and P. Tarau, Random generation of closed simply-typed lambda-terms: a synergy between logic programming and Boltzmann samplers, arXiv preprint arXiv:1612.07682, 2016
K. Grygiel and P. Lescanne, A natural counting of lambda terms, SOFSEM 2016. Preprint 2015
FORMULA
G.f.: A(x) = 1/(1-x)^2 + x^2*A(x)^2.
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+1, 2k+1)*binomial(2k, k)/(k+1). - Paul Barry, Nov 29 2004
a(n) = n + 1 + Sum_k a(k-1)*a(n-k-1), starting from a(n)=0 for n negative. - Henry Bottomley, Feb 22 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(j)*C(n-k, 2j). - Paul Barry, Aug 19 2005
From Paul Barry, May 31 2006: (Start)
G.f.: c(x^2/(1-x)^2)/(1-x)^2, c(x) the g.f. of A000108;
a(n) = Sum_{k=0..floor(n/2)} C(n+1,n-2k)*C(k). (End)
Binomial transform of doubled Catalan sequence 1,1,1,1,2,2,5,5,14,14,... - Paul Barry, Nov 17 2005
Row sums of Pascal-Catalan triangle A086617. - Paul Barry, Nov 17 2005
g(z) = (1-z-sqrt(1-2z-3z^2))/(2z-2z^2)/z - Charles Moore (chamoore(AT)howard.edu), Apr 15 2007, corrected by Vaclav Kotesovec, Feb 13 2014
D-finite with recurrence (n+2)*a(n) +3*(-n-1)*a(n-1) +(-n+4)*a(n-2) +3*(n-1)*a(n-3)=0. - R. J. Mathar, Nov 30 2012
a(n) ~ 3^(n+5/2) / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
EXAMPLE
a(0)=1, a(1)=2, a(2)=3+1=4, a(3)=4+4=8, a(4)=5+10+2=17, a(5)=6+20+12=38, are upward antidiagonal sums of triangle A086614:
{1},
{2,1},
{3,4,2},
{4,10,12,5},
{5,20,42,40,14},
{6,35,112,180,140,42}, ...
For example, with n=2, the 5 ordered trees (A000108) on 3 edges are
|...|..../\.../\.../|\..
|../.\..|......|........
|.......................
Suppressing nonroot vertices of outdegree 1 (branch-reducing) yields
|...|..../\.../\../|\..
.../.\.................
of which 4 are distinct. So a(2)=4.
a(4)=8 because we have HHHH, HHUD, HUDH, HUHD
MAPLE
A086615 := proc(n)
option remember;
if n <= 3 then
2^n;
else
3*(-n-1)*procname(n-1) +(-n+4)*procname(n-2) +3*(n-1)*procname(n-3) ;
-%/(n+2) ;
end if;
end proc:
seq(A086615(n), n=0..20) ; # R. J. Mathar, Nov 02 2021
MATHEMATICA
CoefficientList[Series[(1-x-Sqrt[1-2*x-3*x^2])/(2*x-2*x^2)/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
CROSSREFS
Cf. A086614 (triangle), A086616 (row sums), A348869 (Seq. Transf.).
Cf. A001006.
Cf. A136788.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 24 2003
EXTENSIONS
Edited by N. J. A. Sloane, Oct 16 2006
STATUS
approved
a(n) = Sum{k=0..n} binomial(n,k)^2*C(k), where C() = A000108() are the Catalan numbers.
+10
11
1, 2, 7, 33, 183, 1118, 7281, 49626, 349999, 2535078, 18758265, 141254655, 1079364105, 8350678170, 65298467487, 515349097713, 4100346740511, 32858696386766, 265001681344569
OFFSET
0,2
COMMENTS
Main diagonal of square table A086617 of coefficients, T(n,k), of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/[(1-x)(1-y)] + xy*f(x,y)^2.
a(n) is the number of permutations of length 2n which are invariant under the reverse-complement map and have no decreasing subsequences of length 4. - Eric S. Egge, Oct 21 2008
In 2012, Zhi-Wei Sun proved that for any odd prime p we have the congruence a(1) + ... + a(p-1) == 0 (mod p^2). - Zhi-Wei Sun, Aug 22 2013
LINKS
D. Daly and L. Pudwell, Pattern avoidance in rook monoids, 2013.
T. Denton, Algebraic and Affine Pattern Avoidance, arXiv preprint arXiv:1303.3767 [math.CO], 2013.
Z.-W. Sun, Congruences for Franel numbers, arXiv preprint arXiv:1112.1034 [math.NT], 2011. See (1.22).
Z.-W. Sun, On sums of Apery polynomials and related congruences, J. Number Theory 132(2012), 2673-2699.
FORMULA
Recurrence: (n+3)^2*(4*n+7)*a(n+2) = 2*(20*n^3+117*n^2+220*n+135)*a(n+1) - 9*(n+1)^2*(4*n+11)*a(n). - Vaclav Kotesovec, Sep 11 2012
a(n) ~ 3^(5/2)/(8*Pi) * 9^n/n^2. - Vaclav Kotesovec, Oct 06 2012
G.f.: (1-(1-9*x)^(1/3)*hypergeom([1/3,1/3],[1],-27*x*(1-x)^2/(1-9*x)^2))/(6*x). - Mark van Hoeij, May 02 2013
a(n) = hypergeom([1/2,-n,-n], [1,2], 4). - Vladimir Reshetnikov, Oct 03 2016
D-finite with recurrence (n+1)^2*a(n) +(-19*n^2+8*n+6)*a(n-1) +9*(11*n^2-30*n+21)*a(n-2) -81*(n-2)^2*a(n-3)=0. - R. J. Mathar, Aug 01 2022
EXAMPLE
a(5) = 1118 = 1*1^2 + 1*5^2 + 2*10^2 + 5*10^2 + 14*5^2 + 42*1^2.
MATHEMATICA
Flatten[{1, RecurrenceTable[{(n+3)^2*(4*n+7)*a[n+2]==2*(20*n^3+117*n^2+220*n+135)*a[n+1]-9*(n+1)^2*(4*n+11)*a[n], a[1]==2, a[2]==7}, a, {n, 1, 20}]}] (* Vaclav Kotesovec, Sep 11 2012 *)
Table[HypergeometricPFQ[{1/2, -n, -n}, {1, 2}, 4], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)
PROG
(PARI) a(n)=sum(k=0, n-1, binomial(n-1, k)^2*binomial(2*k, k)/(k+1)) \\ Charles R Greathouse IV, Sep 12 2012
(PARI) a(n)=sum(k=0, n-1, (4*k+3)*sum(i=0, k, binomial(k, i)^2*binomial(2*i, i)))/3/n^2 \\ Charles R Greathouse IV, Sep 12 2012
CROSSREFS
Cf. A086617 (table), A086615 (antidiagonal sums), A003046 (determinants).
Cf. A000108.
Cf. A228456.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 24 2003
EXTENSIONS
Edited by N. J. A. Sloane, Sep 14 2012. The formula in the new definition was first sent in by Michael Somos, Feb 19 2004
Minor edits Vaclav Kotesovec, Mar 31 2014
STATUS
approved
Number of odd length roads between any adjacent nodes in virtual optimal chordal ring of degree 3 (the length of chord < number of nodes/2).
+10
4
1, 5, 31, 213, 1551, 11723, 90945, 719253, 5773279, 46889355, 384487665, 3177879675, 26442188865, 221278343445, 1860908156031, 15717475208853, 133256583398655, 1133591857814363, 9672323357640129, 82752014457666363, 709719620585186529, 6100394753270329605
OFFSET
1,2
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, see page number?
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..1052 (terms 1..100 from T. D. Noe)
FORMULA
a(1) = 1; a(n) = 9*a(n-1) - 2*A086618(n), where A086618(n) = Sum_{k=0..n} Catalan(n)*binomial(n, k)^2, and Catalan(n) = (2*n)!/(n!*(n+1)!). - Michael Somos
a(n) = A002893(n)/3 = (1/3)*Sum_{k=0..n}binomial(n,k)^2*binomial(2k,k). - Philippe Deléham, Sep 14 2008
Recurrence: n^2*a(n) = (10*n^2-10*n+3)*a(n-1) - 9*(n-1)^2*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 3^(2*n+1/2)/(4*Pi*n). - Vaclav Kotesovec, Oct 14 2012
G.f.: (hypergeom([1/3, 1/3],[1],-27*x*(x-1)^2/(9*x-1)^2)/(1-9*x)^(2/3)-1)/3. - Mark van Hoeij, May 14 2013
G.f.: G(0)/(6*x*(1-9*x)^(2/3) ) -1/(3*x), where G(k)= 1 + 1/(1 - 3*(3*k+1)^2*x*(1-x)^2/(3*(3*k+1)^2*x*(1-x)^2 - (k+1)^2*(1-9*x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
a(n) = hypergeom([1/2, -n, -n], [1, 1], 4) / 3. - Peter Luschny, Nov 06 2023
EXAMPLE
a(1)=1; a(2)=9*a(1)-2*2=9-4=5; a(3)=9*5-2*7=31; a(4)=9*31-2*33=213; etc
MAPLE
a := 1; s := 0; for k from 1 to 10 do for i from 0 to k do ss := ((2*(i))!/((i)!*(i+1)!))*((k)!/((i)!*(k-i)!))^2; s := s+ss; od; a := (9*a-2*s); s := 0; od;
# Alternative:
a := n -> hypergeom([1/2, -n, -n], [1, 1], 4)/3;
seq(simplify(a(n)), n = 1..22); # Peter Luschny, Nov 06 2023
MATHEMATICA
Table[Sum[Binomial[n, k]^2*Binomial[2k, k], {k, 0, n}]/3, {n, 1, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)^2*binomial(2*k, k))/3; \\ Michel Marcus, May 10 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
B. Dubalski (dubalski(AT)atr.bydgoszcz.pl), Oct 23 2003
STATUS
approved
Square table, read by antidiagonals, of coefficients T(n,k) of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^3.
+10
3
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 21, 10, 1, 1, 15, 55, 55, 15, 1, 1, 21, 120, 212, 120, 21, 1, 1, 28, 231, 644, 644, 231, 28, 1, 1, 36, 406, 1652, 2617, 1652, 406, 36, 1, 1, 45, 666, 3738, 8685, 8685, 3738, 666, 45, 1, 1, 55, 1035, 7680, 24735, 36345, 24735, 7680
OFFSET
0,5
COMMENTS
The g.f. for A001764 satisfies: g(x) = 1 + x*g(x)^3.
FORMULA
T(n, k) = sum(i=0, k, C(n+k, 2i)*C(n+k-2i, k-i)*A001764(i) ), where A001764(i)=(3i)!/(i!(2i+1)!). - from Michael Somos
EXAMPLE
Rows begin:
{1, 1, 1, 1, 1, 1, 1, 1,..}
{1, 3, 6,10,15,21,28,..}
{1, 6,21,55,120,231,..}
{1,10,55,212,644,..}
{1,15,120,644,..}
{1,21,231,..}
MATHEMATICA
t[n_, k_] := Sum[ Binomial[n+k, 2*i]*Binomial[n+k-2*i, k-i]*(3*i)!/(i!*(2*i+1)!), {i, 0, k}]; Table[t[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 18 2013, after Michael Somos *)
CROSSREFS
Cf. A088926 (diagonal), A088927 (antidiagonal sums), A086617, A001764.
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 23 2003
STATUS
approved
Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies: f(x,y) = g(x,y) + xy*f(x,y)^4 and where g(x,y) satisfies: 1 + (x+y-1)*g(x,y) + xy*g(x,y)^2 = 0.
+10
3
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 48, 20, 1, 1, 35, 162, 162, 35, 1, 1, 56, 441, 841, 441, 56, 1, 1, 84, 1036, 3314, 3314, 1036, 84, 1, 1, 120, 2184, 10786, 18004, 10786, 2184, 120, 1, 1, 165, 4236, 30460, 77952, 77952, 30460, 4236, 165, 1, 1, 220, 7689, 77044
OFFSET
0,5
COMMENTS
Explicitly, g(x,y) = ((1-x-y)+sqrt((1-x-y)^2-4xy))/(2xy) = sum(n>=0, sum(k>=0, N(n,k)*x^n*y^k), where N(n,k) are the Narayana numbers: N(n,k) = C(n+k,k)*C(n+k+2,k+1)/(n+k+2). This array is directly related to sequence A002293, which has a g.f. h(x) that satisfies h(x) = 1 + x*h(x)^4. The inverse binomial transform of the rows grows by three terms per row.
EXAMPLE
Rows begin:
[1, 1, 1, 1, 1, 1, 1, 1, ...];
[1, 4, 10, 20, 35, 56, 84, 120, ...];
[1, 10, 48, 162, 441, 1036, 2184, 4236, ...];
[1, 20, 162, 841, 3314, 10786, 30460, 77044, ...];
[1, 35, 441, 3314, 18004, 77952, 284880, 912042, ...];
[1, 56, 1036, 10786, 77952, 435654, 2007456, 7951674, ...];
[1, 84, 2184, 30460, 284880, 2007456, 11427992, 55009548, ...];
[1, 120, 4236, 77044, 912042, 7951674, 55009548, 317112363, ...];
[1, 165, 7689, 178387, 2624453, 27870393, 231114465, 1576219474, ...]; ...
PROG
(PARI) {L=10; T=matrix(L, L, n, k, 1); for(n=1, L-1, for(k=1, L-1, T[n+1, k+1]=binomial(n+k, k)*binomial(n+k+2, k+1)/(n+k+2)+ sum(j3=1, k, sum(i3=1, n, T[n-i3+1, k-j3+1]* sum(j2=1, j3, sum(i2=1, i3, T[i3-i2+1, j3-j2+1]* sum(j1=1, j2, sum(i1=1, i2, T[i2-i1+1, j2-j1+1]*T[i1, j1])); )); )); )); T}
CROSSREFS
Cf. A089448 (diagonal), A089449 (antidiagonal sums), A086617, A088925, A002293.
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 02 2003
STATUS
approved
Triangle read by rows, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x)^2 + xy*f(x,y)^2.
+10
2
1, 2, 1, 3, 4, 2, 4, 10, 12, 5, 5, 20, 42, 40, 14, 6, 35, 112, 180, 140, 42, 7, 56, 252, 600, 770, 504, 132, 8, 84, 504, 1650, 3080, 3276, 1848, 429, 9, 120, 924, 3960, 10010, 15288, 13860, 6864, 1430, 10, 165, 1584, 8580, 28028, 57330, 73920, 58344, 25740
OFFSET
0,2
FORMULA
T(n,k) = binomial(2*k, k-1)*binomial(n+k+1, n-k) / k for k > 0. # Peter Luschny, Jan 26 2018
EXAMPLE
Rows:
{1},
{2, 1},
{3, 4, 2},
{4, 10, 12, 5},
{5, 20, 42, 40, 14},
{6, 35, 112, 180, 140, 42},
{7, 56, 252, 600, 770, 504, 132},
{8, 84, 504, 1650, 3080, 3276, 1848, 429}, ...
MAPLE
T := (n, k) -> `if`(k=0, n+1, binomial(2*k, k-1)*binomial(n+k+1, n-k)/k):
for n from 0 to 8 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jan 26 2018
CROSSREFS
T(n,n) = A000108(n).
Cf. A086615 (antidiagonal sums), A086616 (row sums), A086617, A000292 (column 1), A277935 (column 2), A000580 (column 3 divided by 5), A000582 (column 4 divided by 14).
KEYWORD
nonn,tabl,easy
AUTHOR
Paul D. Hanna, Jul 24 2003
STATUS
approved
Triangular sequence based on Pascal's triangle: t(n,m) = 2*binomial(m, n) - (1 + n*(m - n)).
+10
0
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 30, 21, 6, 1, 1, 7, 31, 57, 57, 31, 7, 1, 1, 8, 43, 96, 123, 96, 43, 8, 1, 1, 9, 57, 149, 231, 231, 149, 57, 9, 1, 1, 10, 73, 218, 395, 478, 395, 218, 73, 10, 1
OFFSET
1,5
COMMENTS
Suggested by Gary W. Adamson from a previous submission. Very close to (but slightly smaller at 7th row) A086617.
FORMULA
t(n,m) = 2*binomial[m, n] - (1 + n*(m - n)).
EXAMPLE
{1},
{1, 1},
{1, 2, 1},
{1, 3, 3, 1},
{1, 4, 7, 4, 1},
{1, 5, 13, 13, 5, 1},
{1, 6, 21, 30, 21, 6, 1},
{1, 7, 31, 57, 57, 31, 7, 1}
MATHEMATICA
Table[Table[2*Binomial[m, n] - (1 + n*(m - n)), {n, 0, m}], {m, 0, 10}] Flatten[%]
CROSSREFS
Cf. A086617.
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved

Search completed in 0.010 seconds