editing
approved
editing
approved
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-2*k} binomial(n-2*k, j)*binomial(k, j) * A000108(j).
approved
editing
proposed
approved
editing
proposed
G.f.: (1-x^2-sqrt(1-2x2*x^2-4x4*x^3-3x3*x^4))/(2*x^3*(1-x^2)); a(n)=sum{k=0..floor(n/2), sum{j=0..n-2k, C(n-2k, j)C(k, j)C(j)}.
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-2*k} binomial(n-2*k, j)*binomial(k, j)*A000108(j).
approved
editing
editing
approved
Conjecture: (n+3)*a(n) +(-n-2)*a(n-1) +2*(-n-1)*a(n-2) +2*(-n+3)*a(n-3) +(n+1)*a(n-4) +3*(n-2)*a(n-5)=0. - R. J. Mathar, Nov 16 2012
approved
editing
_Paul Barry (pbarry(AT)wit.ie), _, May 31 2005
G.f.: (1-x^2-sqrt(1-2x^2-4x^3-3x^4))/(2*x^3(1-x^2)); a(n)=sum{k=0..floor(n/2), sum{j=0..n-2k, C(n-2k, j)C(k, j)C(j)}.
easy,nonn,new
Diagonal sums of the number triangle associated to A086617.
1, 1, 2, 3, 5, 8, 14, 24, 43, 78, 144, 269, 509, 971, 1868, 3618, 7049, 13805, 27162, 53661, 106405, 211697, 422458, 845386, 1696017, 3410522, 6873060, 13878721, 28077439, 56900936, 115501012, 234807488, 478032437, 974507543, 1989123814
0,3
G.f.: (1-x^2-sqrt(1-2x^2-4x^3-3x^4))/(2*x^3(1-x^2)); a(n)=sum{k=0..floor(n/2), sum{j=0..n-2k, C(n-2k,j)C(k,j)C(j)}.
easy,nonn
Paul Barry (pbarry(AT)wit.ie), May 31 2005
approved