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‡UNIVERSITY OF LYON,
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Abstract. We study the sequences of numbers corresponding to lambda
terms of given sizes, where the size is this of lambda terms with de Bruijn

indices in a very natural model where all the operators have size 1. For plain

lambda terms, the sequence corresponds to two families of binary trees for
which we exhibit bijections. We study also the distribution of normal forms,

head normal forms and strongly normalizing terms. In particular we show that
strongly normalizing terms are of density 0 among plain terms.

Keywords: lambda calculus, combinatorics, functional programming, test,

random generator, ranking, unranking

1. Introduction

In this paper we consider a natural way of counting the size of λ-terms, namely
λ-terms presented by de Bruijn indices1 in which all the operators are counted with
size 1. This means that abstractions, applications, successors and zeros have all
size 1. Formally

|λM | = |M |+ 1

|M1M2| = |M1|+ |M2|+ 1

|Sn| = |n|+ 1

|0· | = 1.

For instance the term for K which is written traditionally λx.λy.x in the lambda
calculus is written λλS0· using de Bruijn indices and we have:

|λλS0· | = 4.

The first author was supported by the National Science Center of Poland, grant number

2011/01/B/HS1/00944, when the author hold a post-doc position at the Jagiellonian University

within the SET project co-financed by the European Union.
1Readers not familiar with de Bruijn indices are invited to read Appendix A.
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since there are two λ abstractions, one successor S and one 0· . The term for S (which
should not be confused with the successor symbol) is written λx.λy.λz.(xz)(yz)
which is written λλλ(((SS0· )0· )((S0· )0· )) using de Bruijn indices and its size is:

|λλλ(((SS0· )0· )((S0· )0· ))| = 13.

since there are three λ abstractions, three applications, three successors S’s, and
four 0· ’s. The term λx.xx which corresponds to the term λ(0· 0· ) has size 4 and the
term (λx.xx)(λx.xx) which corresponds to the term ω is written (λ(0· 0· ))λ(0· 0· ) and
has size 9. The term λf.(λx.f(xx))(λx.f(xx)) which corresponds to the fixpoint Y
is written λ((λ((S0· ) (0· 0· ))) λ((S0· ) (0· 0· ))) and has size 16.

2. Lambda terms

2.1. Counting plain terms with a natural size: L∞. Since the terms are
either applications, abstractions or de Bruijn indices, the set L∞ of lambda terms
is solution of the functional equation:

L∞ = L∞ L∞ � λL∞ � D

where D is the set of de Bruijn indices which is solution of

D = SD � 0·

Let us call L∞ the generating function for counting the number of the plain terms.
It is solution of the functional equation:

L∞ = zL2
∞ + zL∞ +

z

1− z
,

which yields the equation:

zL2
∞ − (1− z)L∞ +

z

1− z
= 0(1)

which has discriminant

∆L∞ = (1− z)2 − 4
z2

1− z

=
(1− z)3 − 4z2

1− z

=
1− 3z − z2 − z3

1− z
This gives the solution

L∞ =
(1− z)−

√
∆L∞

2z

=
(1− z)3/2 −

√
1− 3z − z2 − z3

2z
√

1− z
which has ρL∞

.
= 0.29559774252208393 as pole closest to 0. Since 1/ρL∞

.
=

3.382975767906247, the number of λ-terms of size n grows like 3.3829...n. See
Theorem 1 for a better approximation.

The 18 first values of [zn]L∞ are:

0, 1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, 10455, 31160, 93802, 284789, 871008, 2681019

This sequence is A105633 in the Online Encyclopedia of Integer Sequences.
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Theorem 1.

[zn+1]K = [zn]L∞ ∼
(

1

ρL∞

)n
C

n
3
2

with C
.
= 0.60676... and ρL∞

.
= 0.29559....

Proof. The proof mimics this of Theorem 1 in [3]. Let us write L∞ as

L∞ =
(1− z)−

√
1−3z−z2−z3

1−z

2z

=
(1− z)−

√
ρL∞(1− z

ρL∞
)Q(z)

1−z

2z

where

R(z) = z3 + z2 + 3z − 1

Q(z) =
R(z)

ρL∞ − z
Applying Theorem VI.1 of [2], we get:

[zn]L∞ ∼
(

1

ρL∞

)n
· n
−3/2

Γ(− 1
2 )

C̃

with

C̃ =
−
√
ρL∞

Q(ρL∞ )
1−ρL∞

2ρL∞
Notice that Q(ρL∞) = R′(ρL∞) = 3ρ2

L∞
+ 2ρL∞ + 3. From this we get

C =
C̃

Γ(− 1
2 )

.
= 0.60676...

�

Figure 1 shows approximations of [xn]L∞.

2.2. Counting terms with at most m indices: Lm. The set Lm of terms with
free indices 0, ..,m− 1 is described as

Lm = LmLm � λLm+1

m−1⊕
i=0

Si(0· ).

The set L0 is the set of closed lambda terms. If we consider the λ-terms with at
most m free indices, we get:

Lm = zL2
m − zLm+1 +

z(1− zm)

1− z
which yields:

zL2
m − Lm + z

(
Lm+1 +

1− zm

1− z

)
= 0.

Let us state

∆Lm
= 1− 4z2

(
Lm+1 +

1− zm

1− z

)
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n [xn]L∞
10 3550
20 253106837
30 27328990723991
40 3503758934959966001
50 493839291745701673090756
60 73920774614279746859303111580
70 11535317831253359292868402823579507
80 1855899670106913269845444317474927546423
90 305649725186484753579669948042728038245882292

100 51274965000307280025396615989999357497440689837989

n b(1/ρL∞)nC/n3/2c
10 3767
20 261489930
30 27945182509468
40 3563589864915927683
50 500623883981281516056181
60 74770204056757299054875868847
70 11649230835743409545961872906078995
80 1871967051054756263272240387385909197928
90 308005368563187477433148735955649926279818246

100 51631045600653143846184406311963448514677624135086

Figure 1. Approximation of [xn]L∞.

we have

Lm =
1−

√
∆Lm

2z
.

Notice that Lm is defined using Lm+1. The sequences ([zn]Lm)n∈N do not occur in
the Online Encyclopedia of Integer Sequences.

2.3. Counting λ-terms with another notion of size. Assume we take another
notion of size in which 0· has size 0 and applications have size 2, whereas abstraction
and succession keep their size 1. In other words:

|λM | = |M |+ 1

|M1M2| = |M1|+ |M2|+ 2

|Sn| = |n|+ 1

|0· | = 0.

The generating function2 A1 fulfills the identity:

z2A2
1 − (1− z)A1 +

1

1− z
.

The reader may check that

L∞ = z A1 and [zn]A1 = [zn+1]L∞.

2We write this function A1 as a reference to the function A(x, 1) described in sequence
A105632 of the Online Encyclopedia of Integer Sequences.
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λ− terms black-white trees zigzag free trees neutral hnf

S20· •
•

•

×
×
×

S30·

λS0· •
•

◦

×
×

×

0· (S0· )

λλ0· •
◦

◦

×
×

×

0· (λ0· )

0· 0· •
◦
•

×
× ×

(S0· ) 0·

Figure 2. Bijection between λ-terms, E1-free black-white binary
trees, zigzag-free trees of size 3 (L3 = 4) and neutral head normal
forms of size 4 (K4 = 4).

Hence both notions of size correspond to sequence A105633. In Appendix B we
consider the case where all the operators (application, abstraction and succession)
have size 1 and 0· has size 0.

3. E-free black-white binary trees

A black-white binary tree is a binary tree with colored nodes using two col-
ors, black • and white ◦. The root of a black-white binary tree is •, by conven-
tion. A E-free black-white binary tree is a black-white binary tree in which edges
from a set E are forbidden. For instance if the set of forbidden edges is E1 =

{
◦

• ,
•
◦ ,
•
• ,
◦
◦ }, this means that only edges inA1 = {

•
◦ ,

•
• ,

◦
◦ ,

◦
• }

are allowed. The E1-free black-white binary trees of size 3 and 4 are as many as
lambda terms of size 3 and 4. They are listed in Fig. 2 and Fig. 3 second column.

For E1 = {
◦

• ,
•
◦ ,
•
• ,
◦
◦ }, like for E2 = {

•
◦ ,

•
• ,

◦
◦ ,

◦
• }, which is

obtained by left-right symmetry, the E-free black-white binary trees are counted
by A105633 [4]. In what follows we will consider E1 and we will rather speak in
terms of an allowed set of pattern namely A1. For simplicity, we will call in this
paper black-white trees, the binary black-white trees with allowed pattern set A1.
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λ− terms black-white trees zigzag free trees neutral hnf

S30· •
•

•
•

×
×
×
×

S40·

λS20· •
•

•
◦

×
×
×

×

0· (S20· )

λλS0· •
•

◦
◦

×
×

×
×

0· (λS0· )

λλλ0· •
◦

◦
◦

×
×

×
×

0· (λλ0· )

0· (S0· ) •
•

◦
•

×
×

× ×

(S0· ) (S0· )

0· (λ0· ) •
◦

◦
•

×
×

× ×

(S0· ) (λ0· )

(λ0· ) 0· •
◦
•

◦

×
× ×
×

0· 0· 0·

(S0· ) 0· •
◦
•

•

×
× ×

×

(S20· ) 0·

λ(0· 0· ) •
◦

◦ •

×
× ×

×

0· (0· 0· )

Figure 3. Bijection between λ-terms, E1-free black-white binary
trees and zigzag free trees of size 4 (L4 = 9) and neutral head
normal forms of size 5 (K5 = 9).



D
RA
FT

A NATURAL COUNTING OF LAMBDA TERMS 7

Before giving the bijection, let us give the trees corresponding to K = λλS(0· ), to
S = λλλ(SS0· 0· ) (S0· 0· ), to ω = (λ(0· 0· ))λ(0· 0· ), and to Y = λ(λ(S 0· (0· 0· ))λ(S 0· (0· 0· ))):

for K •
•

◦
◦

for S •
◦

◦ •
◦ • •

◦ ◦
◦ •

•
•

for ω •
◦

◦ •
◦
•

◦
◦ •

for Y •
◦

◦ •
◦ •

◦ •
◦ •
◦

◦ •
◦ •
•

3.1. Recursive description. Assume � is the empty tree which is usually not
represented in drawing. The E1-free black-white binary trees are described by the
following grammar:

BW• = •
BW•

� •
BW◦

BW◦ = � � ◦
BW◦

� ◦
BW◦ BW•

which yields the following equations for the generating functions:

BW• = zBW• + zBW◦

BW◦ = 1 + zBW◦ + zBW◦BW•

hence

BW◦ =
1− z
z

BW•

and

z(1− z)BW 2
• + (1− z)2BW• + z = 0.

which is the same equation up to a multiplication by 1−z as (1) namely the equation
defining L∞
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3.2. The bijection. Let us define the function LtoBw from λ-terms to black-white
trees:

LtoBw(0· ) = •

LtoBw(S(n)) =
LtoBw(n)

•

LtoBw(λM) =
LtoBw(M)

◦

LtoBw(M1M2) =

LtoBw(M2)

◦

LtoBw(M1)

In other words a new node is added on the leftmost node of the tree. from black-
white trees to λ-terms Let us now define the function BwtoL

BwtoL(•) = 0·

BwtoL

(
T

•

)
= S(BwtoL(T ))

BwtoL

(
T

◦

)
= λBwtoL(T )

BwtoL

 T2

◦

T1

 = BwtoL(T1)BwtoL(T2)

In other words, to decompose a binary tree which is not the node •, we look for the
left most node.

• If the leftmost node is •, then the λ-term is a de Bruijn index. Actually

there are only •’s (indeed
◦

• is forbidden) and the tree is linear. If this

linear tree has n •’s it represents Sn−1(0· ).
• If the leftmost node is ◦ and has no child, then the λ-term is an abstraction

of the bijection of the rest.
• If the leftmost node is ◦ and has a right child, then the λ-term is an ap-

plication of the bijection of the right subtree on the bijection of the above
tree .

Proposition 1. LtoBw ◦ BwtoL = idΛ and BwtoL ◦ LtoBw = idBW•

3.3. The bijection in Haskell. In this section we describe Haskell programs for
the bijections. First we define black-white trees. We consider three kinds of trees:
leafs (of arity zero and size zero) corresponding to � and not represented in drawing.

data LTerm = Zero | S LTerm | DBAbs LTerm | DBApp LTerm LTerm

data BTree = Leaf | Black BTree BTree | White BTree BTree

-- insert a tree t at the leftmost node

insertLeftmost :: BwTree -> BwTree -> BwTree

insertLeftmost t BwLeaf = t

insertLeftmost t (Black t1 t2) = Black (insertLeftmost t t1) t2

insertLeftmost t (White t1 t2) = White (insertLeftmost t t1) t2
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-- bijection from lambda terms to E-free black-white binary trees

lToBw :: LTerm -> BwTree

lToBw Zero = Black BwLeaf BwLeaf

lToBw (S n) = Black (lToBw n) BwLeaf

lToBw (DBAbs t) = insertLeftmost (White BwLeaf BwLeaf) (lToBw t)

lToBw (DBApp t1 t2) =

insertLeftmost (White BwLeaf (lToBw t1)) (lToBw t2)

-- bijection from E-free 2-binary trees to lambda terms,

-- True means "black", False means "white"

btToL :: BwTree -> LTerm

btToL (Black BwLeaf BwLeaf) = Zero

btToL t = let (b,t2,t1) = removeLeftmost t

in if b then let n = btToL t2

in (S n)

else case t1 of

BwLeaf -> DBAbs (btToL t2)

Black _ _ -> DBApp (btToL t1) (btToL t2)

-- Take a bw-tree and returns 1. a boolean (black or white?)

-- 2. the pruned tree 3. the tree pending on the leftmost

removeLeftmost :: BwTree -> (Bool,BwTree,BwTree)

removeLeftmost (Black BwLeaf BwLeaf) = (True, BwLeaf, BwLeaf)

removeLeftmost (White BwLeaf t) = (False, BwLeaf, t)

removeLeftmost (Black t1 BwLeaf) =

let (b,t’,t3) = removeLeftmost t1 in (b,Black t’ BwLeaf,t3)

removeLeftmost (White t1 t2) =

let (b,t’,t3) = removeLeftmost t1 in (b,White t’ t2,t3)

4. Binary trees without zigzags

4.1. Non empty zigzag free binary trees. Consider BZ1 the set of binary trees
with no zigzag i.e., with no subtree like

×

×

×

BZ1 is described by

BZ1 =
×
BZ1

� BZ2

BZ2 = × �
×

BZ2
�

×
BZ2 BZ1

Like L∞ and B, BZ1 is solution of the equation:

z(1− z)BZ2
1 + (1− z)2BZ1 + z = 0.
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4.2. A formula. Sapounakis et al. [6] give the formula:

[zn]BZ1 = [zn]L∞ =

(n−1)÷2∑
k=0

(−1)k

n− k

(
n− k
k

)(
2n− 3k

n− 2k − 1

)
5. The bijections between black white trees and zigzag free trees

5.1. From black white trees to zigzag free trees. Let us call BwToBz the
bijection from black white trees to zigzag free trees. Notice that the fourth equation
removes a • and the last equation adds a ×.

BwToBz(�) = �

BwToBz(•) = ×

BwToBz

(
•

t

)
=

×
BwToBz(t)

when t =
•

u

BwToBz

(
•

t

)
= BwToBz(t) when t =

◦
u

BwToBz

(
◦

t t′

)
=

×
BwToBz(t) BwToBz(t′)

when t =
◦

u1 u2

BwToBz

(
◦
t

)
=

×
× BwToBz(t)

5.2. From zigzag free trees to black white trees. We use two functions
BzToBw• and BzToBw◦. Notice also that one adds a • and that one removes
a ×.

BzToBw•(�) = �

BzToBw•(×) = •

BzToBw•

(
×

t

)
=

•
BzToBw•(t)

when t =
×

u1 u2

BzToBw•

(
×

t t′

)
=

•
◦

BzToBw◦(t) BzToBw•(t
′)

when t =
×

u1 u2

BzToBw◦(×) = �

BzToBw◦

(
×

t t′

)
=

◦
BzToBw◦(t) BzToBw•(t

′) when t =
×

u1 u2

Proposition 2. BzToBw• ◦ BwToBz = idBW• and BwToBz ◦ BzToBw• = idBZ .

5.3. Haskell code.

-- Bijection from zigzag frees to black-white

----- to black-white black rooted

bzToBw_black :: BzTree -> BwTree
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bzToBw_black BzLeaf = BwLeaf

bzToBw_black (Node BzLeaf BzLeaf) = Black BwLeaf BwLeaf

bzToBw_black (Node BzLeaf t@(Node _ _)) = Black (bzToBw_black t) BwLeaf

bzToBw_black (Node tLeft@(Node _ _) tRight) =

Black (White (bzToBw_white tLeft) (bzToBw_black tRight)) BwLeaf -- one adds a black

----- to black-white white rooted

bzToBw_white :: BzTree -> BwTree

bzToBw_white (Node tLeft@(Node _ _) tRight) =

White (bzToBw_white tLeft) (bzToBw_black tRight)

bzToBw_white (Node BzLeaf BzLeaf) = BwLeaf -- one removes a node

6. The bijections between lambda terms and zigzag free trees

6.1. From lambda terms to zigzag free trees. Lest us call LToBz this bijection.
It is described in Figure 4

LToBz(0· ) = ×

LToBz(S(n)) =
LToBz(n)

×

LToBz(λ(M)) =
LToBz(M)

×

LToBz(M 0· ) =
×

× LToBz(M)

LToBz(M S(n)) =
LToBz(n)

×
× LToBz(M)

LToBz(M1M2) =
t

×
× LToBz(M1)

when LToBz(M2) =
t

×

Figure 4. The bijection LToBz from lambda terms to zigzag free trees

6.2. From zigzag free terms to lambda terms. The bijection called BzToL is
defined in Figure 5.

Proposition 3. LToBz ◦ BzToL = idBZ and BzToL ◦ LToBz = idΛ.
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BzToL(×) = 0·

BzToL

(
n

×

)
= S(BzToL (n))

BzToL

(
×

×

)
= λ0·

BzToL

(
×

× T

)
= BzToL(T ) 0·

BzToL

 n

×
×

 = λBzToL

(
n

×

)

BzToL

 n

×
× T

 = BzToL(T ) λBzToL

(
n

×

)

BzToL

 T

×
×

 = λBzToL

(
T

×

)

BzToL

 T2

×
× T1

 = BzToL(T1) BzToL

(
T2

×

)

Figure 5. The bijection BzToL

6.3. Examples. Let us look at the bijection on classical examples, namely K, S, ω
and Y:

for K ×
×

×
×

for S ×
× ×

× × ×
× × ×

× ×
× ×
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for ω ×
× ×

×
× ×
× ×

×

for Y ×
× ×

× ×
× × ×
× ×

× ×
×

7. Normal forms

We are now interested in normal forms, that are terms irreducible by β reduction
that are also terms which do not have subterms of the form (λM)N.

There are three associated classes: N (the normal forms),M (the neutral terms,
which are the normal forms without head abstractions) and D (the de Bruijn in-
dices) :

N = M+ λN
M = MN +D
D = SD + 0· .

Let us call N the generating function of N , M the generating function for M and
D the generating function for D. The above equations yield the equations for the
generating functions:

N = M + zN

M = zMN +D

D = zD + z

Clearly

D =
z

1− z

M =
D

1− zN

N =
D

1− zN
+ zN

from which one gets

z(1− z)N2 − (1− z)N +D = 0

z(1− z)2N2 − (1− z)2N + z = 0

with discriminant

∆N = (1− z)4 − 4z2(1− z)2

= (1− z)2(1− 2z − 3z2).

Hence the pole of ∆N are 1, −1 and 1/3 and the smallest pole ρn = 1/3 and normal
forms grow like 3n. Therefore the set of normal forms is of density zero in the set
of terms.
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8. Head normal forms

We are now interested in the set of head normal forms

H = K + λH
K = KL∞ +D

which yields the equations

H = K + zH

K = zKL∞ +D

and

K =
D

1− zL∞

H =
K

1− z
From which we draw

K = z + zL∞.

This can be explained by the following bijection (see Figure 2 and Figure 3):

Proposition 4. If P is a neutral head normal form, it is of the form:

• P = 0· N1N2 . . . Np with p ≥ 1 (of size k + 1) then it is in bijection with
(λN1)N2 . . . Np (of size k),
• P = (Sn)N1 . . . Np (of size k + 1) then it is in bijection with nN1 . . . Np
(of size k),
• P = 0· (of size 1), treated by the case z.

From Theorem 1 we get:

Proposition 5.

[zn+1]K ∼
(

1

ρL∞

)n
C

n
3
2

with C
.
= 0.60676... and ρL∞

.
= 0.29559....

The density of a set A in a set B is

lim
n→∞

An
Bn

where An (respectively Bn) are the numbers of elements of A (respectively of B)
of size n. For instance the density of K in L∞ is

lim
n→∞

[zn]K

[zn]L∞
;

Hence the proposition.

Proposition 6. The density of K in L∞ (i.e., the density of neutral head normal
forms among plain terms) is ρL∞ .

Proposition 7.

[zn]H ∼
(

1

ρL∞

)n
CH

n
3
2

with CH
.
= 0.254625911836762946...
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Proof. The proof is like this of Theorem 1 with

CH =
−
√
ρL∞

Q(ρL∞ )
1−ρL∞

2(1− ρL∞)Γ(− 1
2 )

.
= 0.254625911836762946...

�

Figure 6 compares the coefficients of H with its approximation.

n [xn]H
10 1902
20 118768916
30 12338289374047
40 1552505356757052270
50 216408050593408223194666
60 32156818736630052190010494575
70 4992016749940033843389032870415375
80 800041142163881275363093897487465240590
90 131362728872240507612558556757894820073668254

100 21984069003048322712483528437236630547685953755064

n b(1/ρL∞)nCH/n
3/2c

10 1581
20 109732518
30 11727010776119
40 1495436887319673848
50 210083497584679365571791
60 31376820974748144171493861802
70 4888522574435898663355075650509052
80 785558576073780985739070920824898277393
90 129252413184969184232722751628403772087829182

100 21666626365243195881127917362969390314273901016408)

Figure 6. Approximation of [xn]H.

Proposition 8. The density of H in L∞ (i.e., the density of head normal forms
among plain terms) is ρL∞/(1− ρL∞)

.
= 0.41964337760707887...

Proof. Actually CH

C =
ρL∞

(1−ρL∞ ) . �

9. Terms containing specific subterms

Consider a term M of size p and the set T of terms that contain M as subterm.

T = t+ λT + T L∞ + L∞T − T T
which yields

T = zp + zT + 2zTL∞ − zT 2

and

zT 2 + (1− 2zL∞ − z)T − zp = 0.
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Notice that

1− 2zL∞ − z =
√

∆L∞

Then the discriminant is

∆T = ∆L∞ + 4zp+1

(1− z)∆T = (1− z)∆L∞ + 4zp+1(1− z).

In the interval (0, 1), ∆∞ is decreasing (its derivative is negative) and (1− z)∆T >
(1 − z)∆L∞ . Hence the root ρT of ∆T is larger than the root ρL∞ of ∆∞, that is
ρT > ρL∞ . Beside:

T =

√
∆T −

√
∆L∞

2z
.

Hence the number of terms that do not have M as subterm is given by

L∞ − T =
(1− z)−

√
∆T

2z
.

Theorem 2. The density of terms that do not have M as subterm is 0.

Proof. Indeed the smallest pole of L∞−T is ρT and the smallest pole of L∞ is ρL∞ .
Therefore,

[zn](L∞ − T ) BC

(
1

ρT

)n
[zn]L∞ BC

(
1

ρL∞

)n
Hence, since ρT > ρL∞

lim
n→∞

[zn](L∞ − T )

[zn]L∞
=

(
ρL∞
ρT

)n
= 0.

�

For instance if |t| = 9, that is for instance if t = ω = (λ(0· 0· ))λ(0· 0· ), then

ρT
.
= 0.2956014673597697

and
ρL∞
ρT

.
= 0.9999873991231537.

Corollary 1. The density of terms that contain M as subterm is 1.

Corollary 2. Asymptotically almost no λ-term is strongly normalizing.

Proof. In other words, the density of strongly normalizing terms is 0. Indeed, the
density of terms that contain (λ(0· 0· ))λ(0· 0· ) is 1. Hence the density of non strongly
normalizing terms is 1. Hence the density of strongly normalizing terms is 0. �

10. Conclusion

Figure 7 summarizes what we obtained on densities of terms.
Moreover, this research opens many issues, among others about generating ran-

dom terms and random normal forms using Boltzmann samplers [5].
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nf nhdnf terms with M
sn hdnf sn

0 0.295... 0.419... 1

nf = normal forms
nhdnf = neutral head normal forms hdnf = head normal forms

terms with M = terms containing subterm M
sn = strongly normalizing terms sn = non strongly normalizing terms

Figure 7. Summary of densities
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Appendix A. De Bruijn notations

De Bruijn indices are a system of notations for bound variables due to Nikolaas
de Bruijn and somewhat connected to those proposed by Bourbaki [1]. The goal
is to replace bound variables by placeholders and to link each bound variable to
its binder. For instance (see Figure 8) Bourbaki ([1] p. 20) proposes to represent
placeholders by boxes � and to represent binds by drawn lines. This requires a two
dimensional notation. For example, he considers the formula:

(τx)¬(x ∈ A′) ∨ x ∈ A′′

Notice that we use an infix notation whereas he uses a prefix notation which gives
τ ∨ ¬ ∈ xA′ ∈ xA. The formula contains the binder τ (a binder that Bourbaki
introduces) and two occurrences of the bound variable x, this involves two �’s and
two drawn lines from τ , namely to the first � and to the second �. De Bruijn
proposes to represent the placeholders (in other words the variables) by natural
numbers which represent the length of the link, that is the number of binders
crossed when reaching the actual binder of the variables. In our proposal, we write
natural numbers using the functions zero 0· and successor S. For instance, 3 is
written SSS0· . With de Bruijn notations, Bourbaki’s formula is written:

τ (¬0· ∈ A′) ∨ 0· ∈ A′′

and the lambda terms λx.λy.λz.(xz)(yz) is written λλλ(((SS0· )0· )((S0· )0· )) which
would correspond to the drawing of Figure 9 in Bourbaki style.
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Figure 8. Bourbaki’s notations for formula τ ∨ ¬ ∈ xA′ ∈ xA.

λ λ λ (� �) (� �)

Figure 9. S in Bourbaki style

Appendix B. Another natural counting of lambda terms

Another natural counting is a counting where:

|λM | = |M |+ 1

|M1M2| = |M1|+ |M2|+ 1

|Sn| = |n|+ 1

|0· | = 0.

The generating function is solution of

zM2
∞ − (1− z)M∞ +

1

1− z
= 0

with discriminant

∆M∞ = (1− z)2 − 4
z

1− z

=
(1− z)3 − 4z

1− z

=
1− 7z + 3z2 − z3

1− z
and with root closest to 0: ρM∞

.
= 0.152292401860433 and 1/ρM∞ = 6.5663157700831193.

The first values are:

1, 3, 10, 40, 181, 884, 4539, 24142, 131821, 734577, 4160626

The sequence grows significantly faster than A105633 and is unknown in the On-
line Encyclopedia of Integer Sequences.
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