[go: up one dir, main page]

login
Search: a073753 -id:a073753
     Sort: relevance | references | number | modified | created      Format: long | short | data
n divided by largest cubefree factor of n.
+10
10
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2
OFFSET
1,8
COMMENTS
Numerator of n/rad(n)^2, where rad is the squarefree kernel of n (A007947), denominator: A055231. - Reinhard Zumkeller, Dec 10 2002
FORMULA
a(n) = n / A007948(n).
a(n) = A003557(A003557(n)). - Antti Karttunen, Nov 28 2017
Multiplicative with a(p^e) = p^max(e-2, 0). - Amiram Eldar, Sep 07 2020
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^s - 1/p^(2*s-1) + 1/p^(2*s)). - Amiram Eldar, Dec 07 2023
MATHEMATICA
f[p_, e_] := p^Max[e-2, 0]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
PROG
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f~, f[i, 1]^max(f[i, 2]-2, 0)) \\ Charles R Greathouse IV, Aug 08 2013
(Scheme)
(define (A062378 n) (/ n (A007948 n)))
(definec (A007948 n) (if (= 1 n) n (* (expt (A020639 n) (min 2 (A067029 n))) (A007948 (A028234 n)))))
;; Antti Karttunen, Nov 28 2017
CROSSREFS
Cf. A000189, A000578, A007948, A008834, A019555, A048798, A050985, A053149, A053150, A056551, A056552. See A003557 for squares and A062379 for 4th powers.
Differs from A073753 for the first time at n=90, where a(90) = 1, while A073753(90) = 3.
KEYWORD
nonn,mult
AUTHOR
Henry Bottomley, Jun 18 2001
STATUS
approved
Greatest common divisor of n/spf(n) and n/gpf(n) where spf(n) is the smallest and gpf(n) is the greatest prime factor of n (see A020639, A006530).
+10
3
1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 3, 1, 16, 1, 1, 1, 6, 1, 1, 1, 4, 1, 3, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 6, 1, 1, 3, 32, 1, 3, 1, 2, 1, 5, 1, 12, 1, 1, 5, 2, 1, 3, 1, 8, 27, 1, 1, 6, 1, 1, 1, 4, 1, 9, 1, 2, 1, 1, 1, 16, 1, 7, 3, 10, 1
OFFSET
1,4
COMMENTS
a(n) = if n=p^k (p prime, k>0) then p^(k-1) else n/(spf(n)*gpf(n)).
LINKS
FORMULA
a(n) = GCD(A032742(n), A052126(n)).
MATHEMATICA
gc[n_]:=Module[{fi=Transpose[FactorInteger[n]][[1]]}, GCD[n/First[fi], n/Last[ fi]]]; Array[gc, 110] (* Harvey P. Dale, Jun 17 2012 *)
CROSSREFS
A073753(n) = a(a(n)).
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 07 2002
STATUS
approved

Search completed in 0.009 seconds