[go: up one dir, main page]

login
A008834
Largest cube dividing n.
17
1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 27
OFFSET
1,8
LINKS
Vaclav Kotesovec, Graph - the asymptotic ratio.
Eric Weisstein's World of Mathematics, Cubic Part.
FORMULA
Multiplicative with a(p^e) = p^(3[e/3]). - Mitch Harris, Apr 19 2005
a(n) = A053150(n)^3. - R. J. Mathar, May 27 2011
Dirichlet g.f.: zeta(s)*zeta(3s-3)/zeta(3s). The Dirichlet convolution of this sequence with A050985 generates A000203. - R. J. Mathar, Apr 05 2011
Sum_{k=1..n} a(k) ~ 45 * zeta(4/3) * n^(4/3) / (2*Pi^4). - Vaclav Kotesovec, Jan 31 2019
a(n) = n/A050985(n). - Amiram Eldar, Aug 15 2023
MAPLE
with(numtheory): [ seq( expand(nthpow(i, 3)), i=1..200) ];
# alternative:
A008834 := proc(n)
local p;
a := 1 ;
for p in ifactors(n)[2] do
e := floor(op(2, p)/3) ;
a := a*op(1, p)^(3*e) ;
end do:
a ;
end proc:
seq(A008834(n), n=1..40) ; # R. J. Mathar, Dec 08 2015
MATHEMATICA
a[n_] := Times @@ (#[[1]]^(#[[2]] - Mod[#[[2]], 3]) & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 81}]
(* Jean-François Alcover, Jul 31 2011, after PARI prog. *)
upto=1000; Flatten[With[{c=Range[Floor[Surd[upto, 3]], 1, -1]^3}, Table[ Select[ c, Divisible[n, #]&, 1], {n, upto}]]](* Harvey P. Dale, Apr 07 2013 *)
PROG
(PARI) a(n)=n=factor(n); prod(i=1, #n[, 1], n[i, 1]^(n[i, 2]\3*3)) \\ Charles R Greathouse IV, Jul 28 2011
(Python)
from math import prod
from sympy import factorint
def A008834(n): return prod(p**(e-e%3) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 08 2024
CROSSREFS
KEYWORD
nonn,easy,mult
STATUS
approved