[go: up one dir, main page]

login
Search: a073005 -id:a073005
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of sqrt(3).
(Formerly M4326 N1812)
+10
150
1, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7, 5, 6, 7, 5, 6, 2, 6, 1, 4, 1, 4, 1, 5, 4
OFFSET
1,2
COMMENTS
"The square root of 3, the 2nd number, after root 2, to be proved irrational, by Theodorus."
Length of a diagonal between any vertex of the unit cube and the one corresponding (opposite) vertex not part of the three faces meeting at the original vertex. (Diagonal is hypotenuse of a triangle with sides 1 and sqrt(2)). Hence the diameter of the sphere circumscribed around the unit cube; the ratio of the diameter of any sphere to the edge length of its inscribed cube. - Rick L. Shepherd, Jun 09 2005
The square root of 3 is the length of the minimal Y-shaped (symmetrical) network linking three points unit distance apart. - Lekraj Beedassy, Apr 12 2006
Continued fraction expansion is 1 followed by {1, 2} repeated. - Harry J. Smith, Jun 01 2009
Also, tan(Pi/3) = 2 sin(Pi/3). - M. F. Hasler, Oct 27 2011
Surface of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
This is the case n=6 of Gamma(1/n)*Gamma((n-1)/n)/(Gamma(2/n)*Gamma((n-2)/n)) = 2*cos(Pi/n), therefore sqrt(3) = A175379*A203145/(A073005*A073006). - Bruno Berselli, Dec 13 2012
Ratio of base length to leg length in the isosceles "vampire" triangle, that is, the only isosceles triangle without reflection triangle. The product of cosines of the internal angles of a triangle with sides 1, 1 and sqrt(3) and all similar triangles is -3/8. Hence its reflection triangle is degenerate. See the link below. - Martin Janecke, May 09 2013
Half of the surface of regular octahedron with unit edge (A010469), and one fifth that of a regular icosahedron with unit edge (i.e., 2*A010527). - Stanislav Sykora, Nov 30 2013
Diameter of a sphere whose surface area equals 3*Pi. More generally, the square root of x is also the diameter of a sphere whose surface area equals x*Pi. - Omar E. Pol, Nov 11 2018
Sometimes called Theodorus's constant, after the ancient Greek mathematician Theodorus of Cyrene (5th century BC). - Amiram Eldar, Apr 02 2022
For any triangle ABC, cotan(A) + cotan(B) + cotan(C) >= sqrt(3); equality is obtained only when the triangle is equilateral (see the Kiran S. Kedlaya link). - Bernard Schott, Sep 13 2022
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.
LINKS
Madeleine Bonsma-Fisher and Kent Bonsma-Fisher, How big a table do you need for your jigsaw puzzle?, arXiv:2312.04588 [math.HO], 2023.
M. F. Jones, 22900D approximations to the square roots of the primes less than 100, Math. Comp., Vol. 22, No. 101 (1968), pp. 234-235.
Kiran S. Kedlaya, A < B, (1999) Problem 6.4, p. 6.
Robert J. Nemiroff and Jerry Bonnell, The first 1 million digits of the square root of 3.
Simon Plouffe, Plouffe's Inverter, The square root of 3 to 10 million digits.
Eric Weisstein's World of Mathematics, Reflection Triangle.
Eric Weisstein's World of Mathematics, Square Root.
Eric Weisstein's World of Mathematics, Theodorus's Constant.
Wikipedia, Platonic solid.
FORMULA
Equals Sum_{k>=0} binomial(2*k,k)/6^k = Sum_{k>=0} binomial(2*k,k) * k/6^k. - Amiram Eldar, Aug 03 2020
sqrt(3) = 1 + 1/2 + 1/(2*3) + 1/(2*3*4) + 1/(2*3*4*2) + 1/(2*3*4*2*8) + 1/(2*3*4*2*8*14) + 1/(2*3*4*2*8*14*2) + 1/(2*3*4*2*8*14*2*98) + 1/(2*3*4*2*8*14*2*98*194) + .... (Define F(n) = (n-1)*sqrt(n^2 - 1) - (n^2 - n - 1). Show F(n) = 1/2 + 1/(2*(n+1)) + 1/(2*(n+1)*(2*n)) + 1/(2*(n+1)*(2*n))*F(2*n^2 - 1) for n >= 0; then iterate this identity at n = 2. See A220335.) - Peter Bala, Mar 18 2022
Equals i^(1/3) + i^(-1/3). - Gary W. Adamson, Jul 06 2022
Equals Product_{n>=1} 3^(1/3^n). - Michal Paulovic, Feb 24 2023
Equals Product_{n>=0} ((6*n + 2)*(6*n + 4))/((6*n + 1)*(6*n + 5)). - Antonio Graciá Llorente, Feb 22 2024
EXAMPLE
1.73205080756887729352744634150587236694280525381038062805580697945193...
MAPLE
evalf(sqrt(3), 100); # Michal Paulovic, Feb 24 2023
MATHEMATICA
RealDigits[Sqrt[3], 10, 100][[1]]
PROG
(PARI) default(realprecision, 20080); x=(sqrt(3)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002194.txt", n, " ", d)); \\ Harry J. Smith, Jun 01 2009
(Magma) SetDefaultRealField(RealField(100)); Sqrt(3); // G. C. Greubel, Aug 21 2018
CROSSREFS
Cf. A040001 (continued fraction), A220335.
Cf. A010469 (double), A010527 (half), A131595 (surface of regular dodecahedron).
KEYWORD
cons,nonn,easy
EXTENSIONS
More terms from Robert G. Wilson v, Dec 07 2000
STATUS
approved
Decimal expansion of square root of Pi.
(Formerly M4332 N1814)
+10
77
1, 7, 7, 2, 4, 5, 3, 8, 5, 0, 9, 0, 5, 5, 1, 6, 0, 2, 7, 2, 9, 8, 1, 6, 7, 4, 8, 3, 3, 4, 1, 1, 4, 5, 1, 8, 2, 7, 9, 7, 5, 4, 9, 4, 5, 6, 1, 2, 2, 3, 8, 7, 1, 2, 8, 2, 1, 3, 8, 0, 7, 7, 8, 9, 8, 5, 2, 9, 1, 1, 2, 8, 4, 5, 9, 1, 0, 3, 2, 1, 8, 1, 3, 7, 4, 9, 5, 0, 6, 5, 6, 7, 3, 8, 5, 4, 4, 6, 6, 5
OFFSET
1,2
COMMENTS
Also Gamma(1/2). - Franklin T. Adams-Watters, Apr 07 2006
The integral of the Gaussian function exp(-x^2) over the real line. - Richard Chapling (r.chappers(AT)gmail.com), Jun 05 2008
Also equals the average distance between two points in two dimensions where coordinates are independent normally distributed random variables with mean 0 and variance 1. - Jean-François Alcover, Oct 31 2014, after Steven Finch
Also diameter of a sphere whose surface area equals Pi^2. More generally, the square root of x is also the diameter of a sphere whose surface area equals x*Pi. - Omar E. Pol, Nov 11 2018
REFERENCES
George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 190.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 40.
LINKS
FORMULA
Equals (1/2) * Sum_{n>=0} ((-1)^n * (4*n+1) * (1/8)^(n+1) * (2^(n+1))^3 * Gamma(n+1/2)^3 / Gamma(n+1)^3). - Alexander R. Povolotsky, Mar 25 2013
Equals Integral_{x=0..1} 1/sqrt(-log(x)) dx. - Jean-François Alcover, Apr 29 2013
Equals Sum_{k>=0} (k+1/2)!/(k+2)!. - Amiram Eldar, Jun 19 2023
Equals Integral_{x=0..oo} exp(-x)/sqrt(x) dx. - Michal Paulovic, Sep 24 2023
EXAMPLE
1.7724538509055160272981674833411451827975494561223871282138...
MAPLE
evalf(sqrt(Pi), 120); # Muniru A Asiru, Nov 11 2018
MATHEMATICA
RealDigits[N[Sqrt[Pi], 120]][[1]] (* Richard Chapling (r.chappers(AT)gmail.com), Jun 05 2008 *)
PROG
(PARI) default(realprecision, 20080); x=sqrt(Pi); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002161.txt", n, " ", d)); \\ Harry J. Smith, May 01 2009
(Magma) R:= RealField(100); Sqrt(Pi(R)); // G. C. Greubel, Mar 10 2018
CROSSREFS
Cf. decimal expansions of Gamma(1/k): A073005 (k=3), A068466 (k=4), A175380 (k=5), A175379 (k=6), A220086 (k=7), A203142 (k=8).
KEYWORD
nonn,cons,changed
EXTENSIONS
More terms from Franklin T. Adams-Watters, Apr 07 2006
STATUS
approved
Decimal expansion of Gamma(2/3).
+10
27
1, 3, 5, 4, 1, 1, 7, 9, 3, 9, 4, 2, 6, 4, 0, 0, 4, 1, 6, 9, 4, 5, 2, 8, 8, 0, 2, 8, 1, 5, 4, 5, 1, 3, 7, 8, 5, 5, 1, 9, 3, 2, 7, 2, 6, 6, 0, 5, 6, 7, 9, 3, 6, 9, 8, 3, 9, 4, 0, 2, 2, 4, 6, 7, 9, 6, 3, 7, 8, 2, 9, 6, 5, 4, 0, 1, 7, 4, 2, 5, 4, 1, 6, 7, 5, 8, 3, 4, 1, 4, 7, 9, 5, 2, 9, 7, 2, 9, 1, 1, 1, 0, 6, 4, 3
OFFSET
1,2
COMMENTS
This constant is transcendental: Chudnovsky famously proved that Gamma(1/3) is algebraically independent of Pi, but Gamma(1/3)*Gamma(2/3) = 2*Pi/sqrt(3) by the reflection formula. - Charles R Greathouse IV, Aug 21 2023
FORMULA
This number * A073005 = A186706. - R. J. Mathar, Jun 18 2006
EXAMPLE
1.354117939426400416945288028154513785519327266056793698394022467963782...
MATHEMATICA
RealDigits[ N[ Gamma[2/3], 110]][[1]]
PROG
(PARI) allocatemem(932245000); default(realprecision, 5080); x=gamma(2/3); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b073006.txt", n, " ", d)); \\ Harry J. Smith, May 14 2009
(Magma) SetDefaultRealField(RealField(100)); Gamma(2/3); // G. C. Greubel, Mar 10 2018
CROSSREFS
Cf. A030652 (continued fraction). - Harry J. Smith, May 14 2009
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, Aug 03 2002
STATUS
approved
Decimal expansion of log(Gamma(1/3)).
+10
18
9, 8, 5, 4, 2, 0, 6, 4, 6, 9, 2, 7, 7, 6, 7, 0, 6, 9, 1, 8, 7, 1, 7, 4, 0, 3, 6, 9, 7, 7, 9, 6, 1, 3, 9, 1, 7, 3, 5, 5, 5, 6, 4, 9, 6, 3, 8, 5, 8, 8, 5, 8, 5, 4, 2, 3, 4, 7, 5, 7, 0, 1, 0, 0, 8, 9, 4, 0, 4, 1, 1, 8, 9, 1, 3, 7, 6, 0, 4, 4, 7, 6, 8, 0, 3, 7, 6, 5, 9, 8, 3, 2, 3, 5, 8, 8, 2, 6, 0, 5, 9, 4, 2, 7
OFFSET
0,1
LINKS
EXAMPLE
0.985420646927767069187174036977961391735556496385885...
MAPLE
evalf(log(GAMMA(1/3)), 120); # Vaclav Kotesovec, Mar 17 2015
MATHEMATICA
RealDigits[Log[Gamma[1/3]], 10, 105][[1]] (* Vaclav Kotesovec, Mar 17 2015 *)
PROG
(PARI) log(gamma(1/3)) \\ Michel Marcus, Mar 17 2015
CROSSREFS
Cf. A073005 (Gamma(1/3)), A256127 (second Malmsten integral), A256128 (third Malmsten integral).
Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
Decimal expansion of Gamma(1/6).
+10
17
5, 5, 6, 6, 3, 1, 6, 0, 0, 1, 7, 8, 0, 2, 3, 5, 2, 0, 4, 2, 5, 0, 0, 9, 6, 8, 9, 5, 2, 0, 7, 7, 2, 6, 1, 1, 1, 3, 9, 8, 7, 9, 9, 1, 1, 4, 8, 7, 2, 8, 5, 3, 4, 6, 1, 6, 1, 6, 7, 4, 4, 6, 2, 6, 3, 2, 2, 9, 0, 7, 5, 0, 2, 8, 1, 7, 8, 0, 2, 3, 0, 5, 5, 0, 3, 3, 8, 9, 6, 5, 3, 6, 2, 1, 0, 2, 1, 7, 5, 4, 6, 5, 9, 8, 1
OFFSET
1,1
COMMENTS
A175379 * A073005 * A002161 * A073006 * A203145 = 4*sqrt(Pi^5/3), which is the case n=6 of Product_{i=1..n-1} Gamma(i/n) = sqrt((2*Pi)^(n-1)/n). - Bruno Berselli, Dec 18 2012
The transcendence of this constant is in the mathematical folklore; see Finch (who credits Nesterenko) and Gun-Murty-Rath. - Charles R Greathouse IV, Nov 11 2013
FORMULA
Equals 2*Pi/A203145 = A002194 * A073005^2 / (A002161 * A002580) = A019692 / 1.12878703....
EXAMPLE
Equals 5.56631600178023...
MAPLE
evalf(GAMMA(1/6)) ;
MATHEMATICA
RealDigits[Gamma[1/6], 10, 110][[1]] (* Bruno Berselli, Dec 13 2012 *)
PROG
(PARI) gamma(1/6) \\ Charles R Greathouse IV, Nov 16 2013
(Magma) SetDefaultRealField(RealField(100)); Gamma(1/6); // G. C. Greubel, Mar 10 2018
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Apr 24 2010
STATUS
approved
Decimal expansion of the Integral of Dedekind Eta(x*I) from x = 0..infinity.
+10
15
3, 6, 2, 7, 5, 9, 8, 7, 2, 8, 4, 6, 8, 4, 3, 5, 7, 0, 1, 1, 8, 8, 1, 5, 6, 5, 1, 5, 2, 8, 4, 3, 1, 1, 4, 6, 4, 5, 6, 8, 1, 3, 2, 4, 9, 6, 1, 8, 5, 4, 8, 1, 1, 5, 1, 1, 3, 9, 7, 6, 9, 8, 7, 0, 7, 7, 6, 2, 4, 6, 3, 6, 2, 2, 5, 2, 7, 0, 7, 7, 6, 7, 3, 6, 8, 2, 4, 9, 9, 7, 6, 4, 2, 4, 1, 2, 0, 3, 3, 7, 7, 1, 2, 4, 4
OFFSET
1,1
COMMENTS
Reduction of the integral by Robert Israel, Jul 25 2012: (Start)
Use the definition of DedekindEta as a sum:
Eta(i*x) = Sum_{n=-oo..oo} (-1)^n*exp(-Pi*x*(6n-1)^2/12).
Now Integral_{x=0..oo} exp(-Pi*x*(6n-1)^2/12) dx = 12/(Pi*(6n-1)^2).
According to Maple, Sum_{n=-oo..oo} (-1)^n*12/(Pi*(6n-1)^2) is
2*3^(1/2)*(dilog(1-(1/2)*i-(1/2)*3^(1/2)) - dilog(1-(1/2)*i+(1/2)*3^(1/2)) - dilog(1+(1/2)*i+(1/2)*3^(1/2)) + dilog(1+(1/2)*i-(1/2)*3^(1/2)))/Pi
(Jonquiere's inversion formula -- see http://en.wikipedia.org/wiki/Polylogarithm)
(but note that Maple's dilog(z) is L_2(1-z) in the notation there) gives
dilog(1-(1/2)*i-(1/2)*3^(1/2)) + dilog(1+(1/2)*i-(1/2)*3^(1/2)) = (13/72)*Pi^2
and
dilog(1-(1/2)*i+(1/2)*3^(1/2)) + dilog(1+(1/2)*i+(1/2)*3^(1/2)) = -11*Pi^2/72
which give the desired multiple of Pi. (End)
Ratio of surface area of a sphere to the regular octahedron whose edge equals the radius of the sphere. - Omar E. Pol, Dec 30 2023
LINKS
D. H. Lehmer, Interesting series involving the central binomial coefficient, Am. Math. Monthly 92 (7) (1985) 449
Eric W. Weisstein's World of Mathematics, Dedekind Eta Function.
FORMULA
Equals 2*Pi/sqrt(3), 2 times A093602, and in consequence equal to Sum_{m>=1} 3^m/(m*binomial(2m,m)) according to Lehmer. - R. J. Mathar, Jul 24 2012
Also equals Gamma(1/3)*Gamma(2/3) = A073005 * A073006. - Jean-François Alcover, Nov 24 2014
From Amiram Eldar, Aug 06 2020: (Start)
Equals Integral_{x=0..oo} log(1 + 1/x^3) dx.
Equals Integral_{x=-oo..oo} exp(x/3)/(exp(x) + 1) dx. (End)
Equals Integral_{x=0..2*Pi} 1/(2 + sin(x)) dx; since for a>1: Integral_{x=0..2*Pi} 1/(a + sin(x)) dx = 2*Pi/sqrt(a^2-1). - Bernard Schott, Feb 18 2023
Equals 4*A093766. - Omar E. Pol, Dec 30 2023
EXAMPLE
3.627598728468435701188156515284311464568132496185481151139769870776...
MATHEMATICA
RealDigits[2 Pi/Sqrt[3], 10, 111][[1]] (* Robert G. Wilson v, Nov 18 2012 *)
PROG
(PARI) intnum(x=1e-7, 1e6, eta(x*I, 1)) \\ Charles R Greathouse IV, Feb 26 2011
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, Feb 25 2011
STATUS
approved
Decimal expansion of (1/3)! = Gamma(4/3).
+10
11
8, 9, 2, 9, 7, 9, 5, 1, 1, 5, 6, 9, 2, 4, 9, 2, 1, 1, 2, 1, 8, 5, 6, 4, 3, 1, 3, 6, 5, 8, 2, 2, 5, 8, 8, 1, 3, 7, 6, 2, 2, 9, 7, 9, 2, 6, 5, 2, 4, 3, 3, 7, 0, 0, 3, 1, 6, 8, 0, 9, 4, 4, 2, 5, 3, 0, 1, 3, 9, 2, 0, 3, 3, 8, 9, 2, 4, 7, 9, 3, 9, 8, 4, 6, 9, 9, 4, 2, 9, 6, 3, 4, 7, 0, 6, 2, 9, 2, 9, 8, 0, 6, 3, 8, 6, 3, 4, 9, 7, 3, 3, 3, 5, 7, 4, 2, 1, 1, 1, 1, 9, 0, 6, 3, 6, 1, 5, 2, 3, 1, 6, 8, 1, 5, 7, 4, 1, 9, 9, 9, 2, 5, 7, 1, 1, 2, 2, 5, 6, 9
OFFSET
0,1
FORMULA
A formula from R. W. Gosper, Posting to Math Fun Mailing List, Dec 27 2011:
Equals (1/3) * (2*2^(7/9)*((Pi*EllipticTheta[3, 0, E^(-((16*Pi)/Sqrt[3]))])/ (1 + 1/(2^(1/4)*Sqrt[1 + Sqrt[3]]) + (2^(7/16)*((-1 + Sqrt[2])/(-Sqrt[2] + Sqrt[3]))^(1/4))/(-1+Sqrt[3])^(1/8)))^(2/3))/3^(1/4).
Equals Integral_{0..oo} exp(-x^3) dx. [Jean-François Alcover, Mar 29 2013]
Equals A073005/3. - R. J. Mathar, Jan 15 2021
Equals 3*Integral_{-1/e..0} (-LambertW(-1,x))^(1/3)-(-LambertW(x))^(1/3) dx. - Gleb Koloskov, Jun 07 2021
EXAMPLE
0.89297951156924921121856431365822588137622979265243370031680...
MAPLE
evalf(GAMMA(4/3)) ;
MATHEMATICA
RealDigits[(1/3)!, 10, 150][[1]] (* or *) RealDigits[Gamma[4/3], 10, 150] [[1]] (* Harvey P. Dale, Sep 03 2016 *)
PROG
(Macsyma)
4^(8/9)*%PI^(2/3)*THETA[3](0, %E^-(16*%PI/SQRT(3)))^(2/3)/(3^(1/4)*(2^(7/16)*(SQRT(2)-1)^(1/4)/((SQRT(3)-1)^(1/8)*(SQRT(3)-SQRT(2))^(1/4))+1/(2^(1/4)*SQRT(SQRT(3)+1))+1)^(2/3))
/* This is exact, but degrades to 50+ digits if you replace
THETA[3](0, %E^-(16*%PI/SQRT(3)))
by 1+2*%E^-(16*%PI/SQRT(3)) */
/* R. W. Gosper, Posting to Math Fun Mailing List, Dec 27 2011 */
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Dec 29 2011
EXTENSIONS
Corrected and extended by Harvey P. Dale, Sep 03 2016
STATUS
approved
Decimal expansion of Gamma(1/Pi).
+10
11
2, 8, 1, 1, 2, 9, 7, 5, 1, 4, 6, 7, 0, 8, 6, 1, 6, 4, 2, 1, 2, 2, 7, 9, 0, 8, 0, 3, 7, 1, 0, 4, 8, 1, 6, 9, 3, 5, 2, 8, 1, 6, 5, 5, 2, 2, 3, 2, 9, 1, 7, 6, 5, 6, 8, 2, 2, 8, 9, 6, 5, 9, 0, 5, 3, 9, 3, 8, 6, 1, 5, 4, 8, 8, 7, 0, 1, 9, 2, 0, 5, 6, 8, 5, 1, 8, 8, 4, 8, 7, 4, 2, 3, 1, 8, 9, 0, 9, 3, 6, 4, 2, 4
OFFSET
1,1
COMMENTS
The reference gives an interesting product representation in terms of rational multiple of 1/Pi for Gamma(1/Pi).
EXAMPLE
2.8112975146708616421227908037104816935281655223291765...
MAPLE
evalf(GAMMA(1/Pi), 117);
MATHEMATICA
RealDigits[Gamma[1/Pi], 10, 117][[1]]
PROG
(PARI) default(realprecision, 117); gamma(1/Pi)
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
Decimal expansion of (Gamma(1/6)*Gamma(1/3))/(3*sqrt(Pi)).
+10
8
2, 8, 0, 4, 3, 6, 4, 2, 1, 0, 6, 5, 0, 9, 0, 8, 5, 2, 2, 3, 5, 0, 0, 3, 8, 1, 5, 8, 1, 0, 0, 5, 8, 8, 2, 7, 0, 9, 2, 6, 0, 4, 4, 4, 1, 0, 8, 4, 7, 9, 7, 2, 1, 9, 2, 3, 6, 3, 9, 8, 7, 9, 7, 4, 1, 5, 2, 5, 6, 9, 5, 3, 1, 9, 6, 3, 6, 0, 6, 5, 9, 2, 1, 4, 1, 7, 0, 4, 5, 3, 2, 9, 7, 0, 0, 4, 9, 5, 6, 9, 4, 1, 1, 0, 3
OFFSET
1,1
COMMENTS
General formula: Integral_{x=0..1} (1+x^(3n))/sqrt(1-x^3) dx = G_3 * k_n = G_3*A146751(n)/A146752(n) = A118292*A146751(n)/A146752(n) where G_3 = (Gamma(1/3)^3)/(2^(1/3)*sqrt(3)*Pi) is the number in the present entry. For numerators of k_n see A146752, for denominators of k_n see A146753. - Artur Jasinski
gamma(1/6)*gamma(1/3)/(3*sqrt(Pi)) = gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi). - Harry J. Smith, May 09 2009
LINKS
Eric Weisstein's World of Mathematics, Butterfly Curve
FORMULA
Equals A073005^3 / (A002194*A002580*A000796) [see Vidunas, arXiv:math.CA/0403510]. - R. J. Mathar, Nov 30 2008
Equals 3/hypergeom([1/3, 1/6], [3/2], 1) = A290570*A005480. - Peter Bala, Mar 02 2022
EXAMPLE
2.8043642106509085223500381581005882709260444108... - Harry J. Smith, May 09 2009
MATHEMATICA
RealDigits[(Gamma[1/3]^3)/(2^(1/3) Sqrt[3] Pi), 10, 200] (* Artur Jasinski*)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 4080); x=gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi); for (n=1, 4000, d=floor(x); x=(x-d)*10; write("b118292.txt", n, " ", d)); } \\ Harry J. Smith, Jun 20 2009
CROSSREFS
Cf. A160323 (continued fraction). - Harry J. Smith, May 09 2009
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Apr 22 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 16 2008 at the suggestion of R. J. Mathar
STATUS
approved
Decimal expansion of Gamma(5/6).
+10
8
1, 1, 2, 8, 7, 8, 7, 0, 2, 9, 9, 0, 8, 1, 2, 5, 9, 6, 1, 2, 6, 0, 9, 0, 1, 0, 9, 0, 2, 5, 8, 8, 4, 2, 0, 1, 3, 3, 2, 6, 7, 8, 7, 4, 4, 1, 6, 6, 4, 7, 5, 5, 4, 5, 1, 7, 5, 2, 0, 8, 3, 5, 1, 4, 3, 3, 3, 7, 7, 0, 5, 1, 0, 9, 8, 7, 5, 0, 3, 9, 8, 7, 0, 5, 5, 4, 0, 0, 9, 0, 4, 4, 3, 8, 4, 0, 9, 7, 5
OFFSET
1,3
FORMULA
A073005 * this * A231863 * A010768 = A073006. - R. J. Mathar, Jan 15 2021
Equals 2*Pi/Gamma(1/6) = A019692 / A175379. - Amiram Eldar, Jul 04 2023
Equals 2^(4/3) * Pi^(3/2) / (sqrt(3) * Gamma(1/3)^2). - Vaclav Kotesovec, Jul 04 2023
EXAMPLE
1.1287870299081259612609010902588420133267874416647554517520...
MATHEMATICA
RealDigits[Gamma[5/6], 10, 100][[1]] (* Bruno Berselli, Dec 18 2012 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Dec 29 2011
STATUS
approved

Search completed in 0.022 seconds