[go: up one dir, main page]

login
A256165
Decimal expansion of log(Gamma(1/3)).
18
9, 8, 5, 4, 2, 0, 6, 4, 6, 9, 2, 7, 7, 6, 7, 0, 6, 9, 1, 8, 7, 1, 7, 4, 0, 3, 6, 9, 7, 7, 9, 6, 1, 3, 9, 1, 7, 3, 5, 5, 5, 6, 4, 9, 6, 3, 8, 5, 8, 8, 5, 8, 5, 4, 2, 3, 4, 7, 5, 7, 0, 1, 0, 0, 8, 9, 4, 0, 4, 1, 1, 8, 9, 1, 3, 7, 6, 0, 4, 4, 7, 6, 8, 0, 3, 7, 6, 5, 9, 8, 3, 2, 3, 5, 8, 8, 2, 6, 0, 5, 9, 4, 2, 7
OFFSET
0,1
LINKS
EXAMPLE
0.985420646927767069187174036977961391735556496385885...
MAPLE
evalf(log(GAMMA(1/3)), 120); # Vaclav Kotesovec, Mar 17 2015
MATHEMATICA
RealDigits[Log[Gamma[1/3]], 10, 105][[1]] (* Vaclav Kotesovec, Mar 17 2015 *)
PROG
(PARI) log(gamma(1/3)) \\ Michel Marcus, Mar 17 2015
CROSSREFS
Cf. A073005 (Gamma(1/3)), A256127 (second Malmsten integral), A256128 (third Malmsten integral).
Cf. decimal expansions of log(Gamma(1/k)): A155968 (k=2), A256166 (k=4), A256167 (k=5), A255888 (k=6), A256609 (k=7), A255306 (k=8), A256610 (k=9), A256612 (k=10), A256611 (k=11), A256066 (k=12), A256614 (k=16), A256615 (k=24), A256616 (k=48).
Sequence in context: A119384 A243378 A371219 * A345737 A275703 A094141
KEYWORD
nonn,cons
AUTHOR
STATUS
approved