OFFSET
0,1
FORMULA
A formula from R. W. Gosper, Posting to Math Fun Mailing List, Dec 27 2011:
Equals (1/3) * (2*2^(7/9)*((Pi*EllipticTheta[3, 0, E^(-((16*Pi)/Sqrt[3]))])/ (1 + 1/(2^(1/4)*Sqrt[1 + Sqrt[3]]) + (2^(7/16)*((-1 + Sqrt[2])/(-Sqrt[2] + Sqrt[3]))^(1/4))/(-1+Sqrt[3])^(1/8)))^(2/3))/3^(1/4).
Equals Integral_{0..oo} exp(-x^3) dx. [Jean-François Alcover, Mar 29 2013]
Equals A073005/3. - R. J. Mathar, Jan 15 2021
Equals 3*Integral_{-1/e..0} (-LambertW(-1,x))^(1/3)-(-LambertW(x))^(1/3) dx. - Gleb Koloskov, Jun 07 2021
EXAMPLE
0.89297951156924921121856431365822588137622979265243370031680...
MAPLE
evalf(GAMMA(4/3)) ;
MATHEMATICA
RealDigits[(1/3)!, 10, 150][[1]] (* or *) RealDigits[Gamma[4/3], 10, 150] [[1]] (* Harvey P. Dale, Sep 03 2016 *)
PROG
(Macsyma)
4^(8/9)*%PI^(2/3)*THETA[3](0, %E^-(16*%PI/SQRT(3)))^(2/3)/(3^(1/4)*(2^(7/16)*(SQRT(2)-1)^(1/4)/((SQRT(3)-1)^(1/8)*(SQRT(3)-SQRT(2))^(1/4))+1/(2^(1/4)*SQRT(SQRT(3)+1))+1)^(2/3))
/* This is exact, but degrades to 50+ digits if you replace
THETA[3](0, %E^-(16*%PI/SQRT(3)))
by 1+2*%E^-(16*%PI/SQRT(3)) */
/* R. W. Gosper, Posting to Math Fun Mailing List, Dec 27 2011 */
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Dec 29 2011
EXTENSIONS
Corrected and extended by Harvey P. Dale, Sep 03 2016
STATUS
approved