[go: up one dir, main page]

login
Search: a065483 -id:a065483
     Sort: relevance | references | number | modified | created      Format: long | short | data
Continued fraction for constant defined in A065483.
+20
1
1, 2, 1, 16, 1, 1, 3, 1, 5, 17, 1, 5, 2, 10, 3, 2, 14, 4, 19, 2, 3, 1, 20, 1, 1, 1, 3, 4, 1, 1, 5, 1, 1, 7, 1, 5, 3, 2, 1, 1, 1, 2, 16, 1, 2, 31, 3, 1, 2, 1, 2, 27, 11, 1, 27, 6, 6, 1, 1, 10, 1, 3, 14, 3, 1, 1, 1, 3, 10, 1, 1, 2, 8, 3, 1, 1, 2, 1, 2, 5, 4, 3, 1, 2, 1, 1, 2, 1, 4, 1, 2, 1
OFFSET
0,2
PROG
(PARI) contfrac(prodeulerrat(1 + 1/(p^2*(p-1)))) \\ Amiram Eldar, Jul 08 2024
CROSSREFS
Cf. A065483 (decimal expansion).
KEYWORD
nonn,cofr
AUTHOR
Benoit Cloitre, Dec 02 2002
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 05 2024
STATUS
approved
3-full (or cube-full, or cubefull) numbers: if a prime p divides n then so does p^3.
+10
88
1, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 432, 512, 625, 648, 729, 864, 1000, 1024, 1296, 1331, 1728, 1944, 2000, 2048, 2187, 2197, 2401, 2592, 2744, 3125, 3375, 3456, 3888, 4000, 4096, 4913, 5000, 5184, 5488, 5832, 6561, 6859, 6912, 7776, 8000
OFFSET
1,2
COMMENTS
Also called powerful_3 numbers.
For n > 1: A124010(a(n),k) > 2, k = 1..A001221(a(n)). - Reinhard Zumkeller, Dec 15 2013
a(m) mod prime(n) > 0 for m < A258600(n); a(A258600(n)) = A030078(n) = prime(n)^3. - Reinhard Zumkeller, Jun 06 2015
REFERENCES
M. J. Halm, More Sequences, Mpossibilities 83, April 2003.
A. Ivic, The Riemann Zeta-Function, Wiley, NY, 1985, see p. 407.
E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
M. J. Halm, Sequences
H.-Q. Liu, The number of cubefull numbers in an interval (supplement), Funct. Approx. Comment. Math. 43 (2) 105-107, December 2010.
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p prime}(1 + 1/(p^2*(p-1))) (A065483). - Amiram Eldar, Jun 23 2020
Numbers of the form x^5*y^4*z^3. There is a unique representation with x,y squarefree and coprime. - Charles R Greathouse IV, Jan 12 2022
MAPLE
isA036966 := proc(n)
local p ;
for p in ifactors(n)[2] do
if op(2, p) < 3 then
return false;
end if;
end do:
return true ;
end proc:
A036966 := proc(n)
option remember;
if n = 1 then
1 ;
else
for a from procname(n-1)+1 do
if isA036966(a) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, May 01 2013
MATHEMATICA
Select[ Range[2, 8191], Min[ Table[ # [[2]], {1}] & /@ FactorInteger[ # ]] > 2 &]
Join[{1}, Select[Range[8000], Min[Transpose[FactorInteger[#]][[2]]]>2&]] (* Harvey P. Dale, Jul 17 2013 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, fromList, union)
a036966 n = a036966_list !! (n-1)
a036966_list = 1 : f (singleton z) [1, z] zs where
f s q3s p3s'@(p3:p3s)
| m < p3 = m : f (union (fromList $ map (* m) ps) s') q3s p3s'
| otherwise = f (union (fromList $ map (* p3) q3s) s) (p3:q3s) p3s
where ps = a027748_row m
(m, s') = deleteFindMin s
(z:zs) = a030078_list
-- Reinhard Zumkeller, Jun 03 2015, Dec 15 2013
(PARI) is(n)=n==1 || vecmin(factor(n)[, 2])>2 \\ Charles R Greathouse IV, Sep 17 2015
(PARI) list(lim)=my(v=List(), t); for(a=1, sqrtnint(lim\1, 5), for(b=1, sqrtnint(lim\a^5, 4), t=a^5*b^4; for(c=1, sqrtnint(lim\t, 3), listput(v, t*c^3)))); Set(v) \\ Charles R Greathouse IV, Nov 20 2015
(PARI) list(lim)=my(v=List(), t); forsquarefree(a=1, sqrtnint(lim\1, 5), my(a5=a[1]^5); forsquarefree(b=1, sqrtnint(lim\a5, 4), if(gcd(a[1], b[1])>1, next); t=a5*b[1]^4; for(c=1, sqrtnint(lim\t, 3), listput(v, t*c^3)))); Set(v) \\ Charles R Greathouse IV, Jan 12 2022
(Python)
from math import gcd
from sympy import integer_nthroot, factorint
def A036966(n):
def f(x):
c = n+x
for w in range(1, integer_nthroot(x, 5)[0]+1):
if all(d<=1 for d in factorint(w).values()):
for y in range(1, integer_nthroot(z:=x//w**5, 4)[0]+1):
if gcd(w, y)==1 and all(d<=1 for d in factorint(y).values()):
c -= integer_nthroot(z//y**4, 3)[0]
return c
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f, n, n) # Chai Wah Wu, Sep 10 2024
KEYWORD
easy,nonn,nice,changed
EXTENSIONS
More terms from Erich Friedman
Corrected by Vladeta Jovovic, Aug 17 2002
STATUS
approved
Decimal expansion of Product_{p prime >= 2} (1 + p/((p-1)^2*(p+1))).
+10
15
2, 2, 0, 3, 8, 5, 6, 5, 9, 6, 4, 3, 7, 8, 5, 9, 7, 8, 7, 8, 7, 2, 8, 2, 8, 3, 1, 6, 4, 8, 0, 0, 8, 9, 6, 6, 2, 5, 6, 7, 1, 7, 3, 1, 9, 3, 7, 8, 7, 8, 5, 8, 6, 3, 4, 1, 7, 0, 4, 9, 5, 5, 4, 4, 8, 7, 1, 6, 6, 8, 8, 6, 8, 1, 1, 8, 5, 2, 6, 9, 5, 4, 9, 7, 5, 7, 2, 6, 6, 0, 4, 1, 9, 0, 1, 3, 9, 5, 6
OFFSET
1,1
COMMENTS
Decimal expansion of totient constant. - Eric W. Weisstein, Apr 20 2006
LINKS
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 86.
Eric Weisstein's World of Mathematics, Totient Summatory Function.
FORMULA
Equals Pi^2 * A065483 / 6.
Also defined as: Sum_{m>=1} 1/(m*A000010(m)). See Weisstein link.
Equals 5 * Sum_{m>=1} (-1)^(m+1)/(m*A000010(m)). - Amiram Eldar, Nov 21 2022
EXAMPLE
2.203856596437859787872828316480...
MATHEMATICA
$MaxExtraPrecision = 500; digits = 99; terms = 500; P[n_] := PrimeZetaP[n];
LR = Join[{0, 0, 0}, LinearRecurrence[{2, -1, -1, 1}, {3, 4, 5, 3}, terms + 10]]; r[n_Integer] := LR[[n]]; (Pi^2/6)*Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10] ] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
PROG
(PARI) prodeulerrat(1 + p/((p-1)^2*(p+1))) \\ Hugo Pfoertner, Jun 02 2020
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
N. J. A. Sloane, Nov 19 2001, Aug 09 2010
STATUS
approved
Numbers whose minimum prime exponent is 2.
+10
6
4, 9, 25, 36, 49, 72, 100, 108, 121, 144, 169, 196, 200, 225, 288, 289, 324, 361, 392, 400, 441, 484, 500, 529, 576, 675, 676, 784, 800, 841, 900, 961, 968, 972, 1089, 1125, 1152, 1156, 1225, 1323, 1352, 1369, 1372, 1444, 1521, 1568, 1600, 1681, 1764, 1800
OFFSET
1,1
COMMENTS
Or barely powerful numbers, a subset of powerful numbers A001694.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose minimum multiplicity is 2 (counted by A244515).
Powerful numbers (A001694) that are not cubefull (A036966). - Amiram Eldar, Jan 30 2023
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Product_{p prime} (1 + 1/(p^2*(p-1))) = A082695 - A065483 = 0.6038122832... . - Amiram Eldar, Jan 30 2023
EXAMPLE
The sequence of terms together with their prime indices begins:
4: {1,1}
9: {2,2}
25: {3,3}
36: {1,1,2,2}
49: {4,4}
72: {1,1,1,2,2}
100: {1,1,3,3}
108: {1,1,2,2,2}
121: {5,5}
144: {1,1,1,1,2,2}
169: {6,6}
196: {1,1,4,4}
200: {1,1,1,3,3}
225: {2,2,3,3}
288: {1,1,1,1,1,2,2}
289: {7,7}
324: {1,1,2,2,2,2}
361: {8,8}
392: {1,1,1,4,4}
400: {1,1,1,1,3,3}
MATHEMATICA
Select[Range[1000], Min@@FactorInteger[#][[All, 2]]==2&]
PROG
(PARI) is(n)={my(e=factor(n)[, 2]); n>1 && vecmin(e) == 2; } \\ Amiram Eldar, Jan 30 2023
(Python)
from math import isqrt, gcd
from sympy import integer_nthroot, factorint, mobius
def A325240(n):
def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c, l = n+x, 0
j = isqrt(x)
while j>1:
k2 = integer_nthroot(x//j**2, 3)[0]+1
w = squarefreepi(k2-1)
c -= j*(w-l)
l, j = w, isqrt(x//k2**3)
c -= squarefreepi(integer_nthroot(x, 3)[0])-l
for w in range(1, integer_nthroot(x, 5)[0]+1):
if all(d<=1 for d in factorint(w).values()):
for y in range(1, integer_nthroot(z:=x//w**5, 4)[0]+1):
if gcd(w, y)==1 and all(d<=1 for d in factorint(y).values()):
c += integer_nthroot(z//y**4, 3)[0]
return c
return bisection(f, n, n**2) # Chai Wah Wu, Oct 02 2024
CROSSREFS
Positions of 2's in A051904.
Maximum instead of minimum gives A067259.
KEYWORD
nonn,changed
AUTHOR
Gus Wiseman, Apr 15 2019
STATUS
approved
a(1)=8; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+1}^{e_i+2}.
+10
5
8, 27, 125, 81, 343, 3375, 1331, 243, 625, 9261, 2197, 10125, 4913, 35937, 42875, 729, 6859, 16875, 12167, 27783, 166375, 59319, 24389, 30375, 2401, 132651, 3125, 107811, 29791, 1157625, 50653, 2187, 274625, 185193, 456533, 50625, 68921, 328509, 614125
OFFSET
1,1
REFERENCES
From a puzzle proposed by Marc LeBrun.
FORMULA
Sum_{n>=1} 1/a(n) = (4/5) * A065483 - 7/8 = 0.196827322859... . - Amiram Eldar, Sep 19 2023
MATHEMATICA
f[p_, e_] := NextPrime[p]^(e + 2); a[1] = 8; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)
KEYWORD
easy,nonn
EXTENSIONS
More terms from David W. Wilson
STATUS
approved
a(n) = p^2*(p-1), where p = prime(n).
+10
5
4, 18, 100, 294, 1210, 2028, 4624, 6498, 11638, 23548, 28830, 49284, 67240, 77658, 101614, 146068, 201898, 223260, 296274, 352870, 383688, 486798, 564898, 697048, 903264, 1020100, 1082118, 1213594, 1283148, 1430128, 2032254, 2230930
OFFSET
1,1
FORMULA
a(n) = p^3 - p^2 = A030078(n) - A001248(n).
a(n) = A000010(prime(n)^3). - R. J. Mathar, Oct 15 2017
Sum_{n>=1} 1/a(n) = A152441. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Nov 22 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A065483.
Product_{n>=1} (1 - 1/a(n)) = A065414. (End)
EXAMPLE
a(4) = 294 because the 4th prime number is 7, 7^2 = 49, 7-1 = 6 and 49 * 6 = 294.
MATHEMATICA
Table[Prime[n]^3-Prime[n]^2, {n, 1, 12}] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
Table[p^3-p^2, {p, Prime[Range[40]]}] (* Harvey P. Dale, Jan 15 2015 *)
PROG
(Magma)[(p^3-p^2): p in PrimesUpTo(200)]; // Vincenzo Librandi, Dec 15 2010
(PARI) forprime(p=2, 1e3, print1(p^2*(p-1)", ")) \\ Charles R Greathouse IV, Jun 16 2011
CROSSREFS
Cf. A001248 (p^2), A030078 (p^3), A045991 (n^2 * (n-1)), A065414, A065483, A152441.
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Nov 25 2007
STATUS
approved
Numbers with all prime indices and exponents > 2.
+10
5
1, 125, 343, 625, 1331, 2197, 2401, 3125, 4913, 6859, 12167, 14641, 15625, 16807, 24389, 28561, 29791, 42875, 50653, 68921, 78125, 79507, 83521, 103823, 117649, 130321, 148877, 161051, 166375, 205379, 214375, 226981, 274625, 279841, 300125, 300763, 357911
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 3000 terms from Amiram Eldar)
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p prime > 3} (1 + 1/(p^2*(p-1))) = (72/95)*A065483 = 1.0154153584... . - Amiram Eldar, May 28 2022
EXAMPLE
The initial terms together with their prime indices:
1: {}
125: {3,3,3}
343: {4,4,4}
625: {3,3,3,3}
1331: {5,5,5}
2197: {6,6,6}
2401: {4,4,4,4}
3125: {3,3,3,3,3}
4913: {7,7,7}
6859: {8,8,8}
12167: {9,9,9}
14641: {5,5,5,5}
15625: {3,3,3,3,3,3}
16807: {4,4,4,4,4}
24389: {10,10,10}
28561: {6,6,6,6}
29791: {11,11,11}
42875: {3,3,3,4,4,4}
MATHEMATICA
Select[Range[10000], #==1||!MemberQ[FactorInteger[#], {_?(#<5&), _}|{_, _?(#<3&)}]&]
CROSSREFS
The version for only parts is A007310, counted by A008483.
The version for <= 2 instead of > 2 is A018256, # of compositions A137200.
The version for only multiplicities is A036966, counted by A100405.
The version for indices and exponents prime (instead of > 2) is:
- listed by A346068
- counted by A351982
- only exponents: A056166, counted by A055923
- only parts: A076610, counted by A000607
The version for > 1 instead of > 2 is A062739, counted by A339222.
The version for compositions is counted by A353428, see A078012, A353400.
The partitions with these Heinz numbers are counted by A353501.
A000726 counts partitions with multiplicities <= 2, compositions A128695.
A001222 counts prime factors with multiplicity, distinct A001221.
A004250 counts partitions with some part > 2, compositions A008466.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A295341 counts partitions with some multiplicity > 2, compositions A335464.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 16 2022
STATUS
approved
Count of the 3-full divisors of n.
+10
4
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1
OFFSET
1,8
COMMENTS
a(n) is the number of divisors d of n with d an element of A036966.
This is the 3-full analog of the 2-full case A005361.
LINKS
Aleksandar Ivić, On the asymptotic formulas for powerful numbers, Publications de l'Institut Mathématique, Vol. 23, No. 37 (1978), pp. 85-94; alternative link.
FORMULA
a(n) = Sum_{d|n, d in A036966} 1.
a(n) <= A005361(n).
Multiplicative with a(p^e) = max(1,e-1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/(p^2*(p-1))) (A065483). (Ivić, 1978). - Amiram Eldar, Jul 23 2022
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 1/p^(3*s)). - Amiram Eldar, Sep 21 2023
EXAMPLE
a(16)=3 because the divisors of 16 are {1,2,4,8,16}, and three of these are 3-full: 1, 8=2^3 and 16=2^4.
MAPLE
f:= n -> convert(map(t -> max(1, t[2]-1), ifactors(n)[2]), `*`):
map(f, [$1..200]); # Robert Israel, Jul 19 2017
MATHEMATICA
Table[Product[Max[{1, i - 1}], {i, FactorInteger[n][[All, 2]]}], {n, 1, 200}] (* Geoffrey Critzer, Feb 12 2015 *)
Table[1 + DivisorSum[n, 1 &, AllTrue[FactorInteger[#][[All, -1]], # > 2 &] &], {n, 120}] (* Michael De Vlieger, Jul 19 2017 *)
PROG
(PARI) A190867(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= max(1, f[k, 2]-1); ); m; } \\ Antti Karttunen, Jul 19 2017
(Python)
from sympy import factorint
from operator import mul
def a(n): return 1 if n==1 else reduce(mul, [max(1, e - 1) for e in factorint(n).values()])
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 19 2017
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
R. J. Mathar, May 27 2011
STATUS
approved
Multiplicative with a(p^e) = p^(e + 2), e > 0.
+10
4
1, 8, 27, 16, 125, 216, 343, 32, 81, 1000, 1331, 432, 2197, 2744, 3375, 64, 4913, 648, 6859, 2000, 9261, 10648, 12167, 864, 625, 17576, 243, 5488, 24389, 27000, 29791, 128, 35937, 39304, 42875, 1296, 50653, 54872, 59319, 4000, 68921, 74088, 79507, 21296, 10125
OFFSET
1,2
LINKS
FORMULA
Dirichlet g.f.: Product_{primes p} (1 + p^3/(p^s - p)).
Dirichlet g.f.: zeta(s-3) * zeta(s-1) * Product_{primes p} (1 + p^(4-2*s) - p^(6-2*s) - p^(1-s)).
Sum_{k=1..n} a(k) ~ c * zeta(3) * n^4 / 4, where c = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 = 0.53589615382833799980850263131854595064822237...
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = n * A007947(n)^2 = A064549(n) * A007947(n) = A064549(A064549(n)).
A000005(a(n)) = A360997(n).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p-1))) = A065483. (End)
MATHEMATICA
g[p_, e_] := p^(e+2); a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1 + p^3*X/(1 - p*X))[n], ", "))
KEYWORD
nonn,easy,mult
AUTHOR
Vaclav Kotesovec, Mar 06 2023
STATUS
approved
a(1)=27; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+2}^{e_i+2}.
+10
2
27, 125, 343, 625, 1331, 42875, 2197, 3125, 2401, 166375, 4913, 214375, 6859, 274625, 456533, 15625, 12167, 300125, 24389, 831875, 753571, 614125, 29791, 1071875, 14641, 857375, 16807, 1373125, 50653, 57066625, 68921, 78125, 1685159
OFFSET
1,1
COMMENTS
Analog of A045967 a(1)=4; if n = Product p_i^e_i, n>1, then a(n) = Product p_{i+1}^{e_i+1}. In a sense, n is the zeroth sequence in a family of sequences, A045967 is the first sequence in a family of sequences and a(n) is the second sequence in a family of sequences.
If we had a(1) = 1 (instead of 4), then this would be multiplicative and a permutation of A353502. - Amiram Eldar, Aug 11 2022
FORMULA
Sum_{n>=1} 1/a(n) = (72/95)*A065483 - 26/27. - Amiram Eldar, Aug 11 2022
MAPLE
A126272 := proc(n) local pf, i, p, e, resul ; if n = 1 then 27 ; else pf := ifactors(n)[2] ; resul := 1 ; for i from 1 to nops(pf) do p := op(1, op(i, pf)) ; e := op(2, op(i, pf)) ; resul := resul * nextprime(nextprime(p))^(e+2) ; od ; resul ; fi ; end: for n from 1 to 40 do printf("%d, ", A126272(n)) ; od ; # R. J. Mathar, Apr 20 2007
MATHEMATICA
f[p_, e_] := NextPrime[p, 2]^(e + 2); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 09 2007
EXTENSIONS
More terms from R. J. Mathar, Apr 20 2007
STATUS
approved

Search completed in 0.015 seconds