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1. Introduction

A natural number is said to be powerful if it contains powers or primes
as factors; more precisely let G (k) denote for each fixed natural k>1 the
set of all natural numbers with the property that if a prime p divides an
element of G (k) then p* divides it also. In other words the set of powerful
numbers G (k) contains for a fixed & numbers whose canonical factorisation is

¢)) n=pi'p5.-.p¥ a;>k for j=1,2,..., 1

For each o; there is a uniquely determined @; such that o;=8; (modn) and
k<B;<2k-1, so that every powerful number may be written uniquely in

the form
k k41 k42 2k—1
(1.2) n=a,,a1+ ast IR i)

where a,, a,, ... , a_, are squarefree numbers and (a;, a;) =1 for 1 <i<<j<k—1.
Thus if we set

1 neG (k) 2 -
= ’ F, = )
fe {0 o O3 A0
it follows that
(1.3) F@=T1 Qap*ssp®evsp. . y=]] (1 4+ptRs(pr—1)""), or

(14)  Fe()=T1 (ptnrpp=tanng . 4 p=Ck-D) L (ks),
p
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where for Res>1 {(s)= IT 1=p~%)—! is Riemann’s zeta function. Further
factoring gives ’
L) C((k+ D) E(h+2)9)- - L(Rk=1)5) _
F, ()% ((Rk+2)5)C(2k+4)5): - -L((4k—2)5)

(1 +p~&+Ds) (1 4 pleDsy . L (1 4 p~@k=1)s)
l:I (1 +p—(k+l)s+p—(k+2)s+ e e +p—(2k—l)s) =

I

B p—(2k+3)s+p—(2k+4)s+ 2p—(24k+5)a dee e +P—(3k2—3k)s/2 _
= I"I 1+p—(k+1)s+p—(k+2)s+ e 4 pm@k-ls )
= H (1 +a; (P, S))’
4

where a, (p, §)~p~C@%+3s for real s as p— 0, so that

C(ks)C((k+1)s) L(k+2))s- - -E((2k—1)s)
C(Rk+2)5)T(2k+4)s- - -L((4k—2)5)

(1.5) F (s)= AGN

where ¢, (s) =[] (144, (p, s))~! has a Dirichlet series with the abscissa of
convergence 1/(3k+ 3) for k>2 (¢, (s)=1 for k=2), so that we may write
(1.6) F (5) =Gy (s) Hr. (5),
where

Ho ()= 5 b~ =L k) C((k+ 19 - -L(2k—1)5)
and "

Gi(6)= S g =g (VL ((2k+2)8)- - L (Bk—2)s)
n=1

is a Dirichlet series with the abscissa of convergence equal to 1/(2k+2). If
A, (x) denotes the number of powerful numbers not exceeding x for a fixed
k>2, then we have

1.7 A= 2 =2 felm= 2 g (m) h ().

n<<x,ncG (k) n<x mn<<x

Powerful numbers were first investigated by P. Erdos and G. Szekeres
in [2]. Later researches include [3], [4], [6] and P. Bateman’s and E. Gros-
swald’s paper [1] where the following results were obtained:

(18) 4,(x)=CGDLGE) ¥ +E Q35 2)xB+0 (x5 exp(—aw(x),
where a>0 and o (x)=(log x)*"-log log x)~3/7,

(1.9) ; Ay (%) =Yo3 X1 +y5 XA+ v, X1+ O (x714)
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where ¥,;, Y13 Y23 are computable constants,
(110) Ak (x) = Yok x'lk + Y1k x!te+ D) R o (7 x! e+ + Ak (x)9

where r is an integer >1, r22<k<(r+1)?*/2, vy for i=0,1, ..., r are com-
putable constants and

O (xflkr+20og" )  + rf2<k<r(r+1)/2
A, (x)={0(x1/("+’+1) log"+1 x) k=r(r+1)2.
O (3t +r 1) r(r+1)2<k<(r+1)*2

The main purpose of this paper is to give estimates for A, (x) and
>, o« (), where «,(n) denotes the number of divisors of n from G (k). I

n<x

conjecture that for all k>2 the following formula holds:

(1D A () =voe x4y, XUEED 4oy x@ED 4 O (x%),

where v;= Res F,(s)s! for i=0,1,...,k—1 and 0,<1/(2k~—1). This is
s=1/(k+i)

proved with 6,=1/(2k)+= for every £>0 under the truth of the Lindelof
hypothesis, and unconditionally for k<6 with explicit values of 0, 6, and 6,.

2. Estimates of A, (x).
If one uses Bateman’s and Grosswald’s proof of (1.8) and the estimate
M@)=> u@m)=0 (x-exp (—cn(x)), where ¢>0 and 7(x) = (logx)¥s.

n<<x
- (loglog x)~*/%, which is due to A. Walfisz [12], then in (1.8) the error term
may be replaced by O (x!/S-exp (—b~(x)) where 5> 0.

It is seen from (1.7) that 4, (x) depends on 2, & (n) = > 1,
n=x nl; n’lc"'1 .. -nz_’:TISx
so that one may hope that a sufficiently sharp estimate of >, A (n) may lead
n<x

to the conjectured formula (1.11) for A4, (x).This is indeed so, as shown by
the following

Lemma 1. Suppose that for 1](2k +2)<m,<1/(2k —1) we have

2k—1 2kt )
@D 3 b= > 1='5 (TI CUM)x1+0 o).

n<x "I;"Ilc+1"'”12ci—ll§x i=k j=k, j#i
Then (1.11) holds with 0, =7 .
Proof. 4,(M=2fi(=2 & 2 h(m)=
n<x n<x m<xin

2k—-1 —
=S gm S X0 S (g |n ),
i=k

n<x n<x
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2k—1
where ¢;= [ ] %(j/i). Since the abscissa of convergence of G (s) equals 1/(2k +2)
j=k, j#i
we have 2, |gi(n)|n~" =0O(1), and partial summation gives for every >0
n<x

and i=k, k+1,...,2k—-1

5, () n~11= Gy (1/i)-+ O (eHakswe-ti,

n<x
so that finally
2k—1 2kt .
A= 3 ¢G1f)x+ 3 OGN0 (&),
i—k i—k

which proves (1.11) with 0, =w,and y;_y r=c¢;G(1/i)for i=k, k+1,..., 2k—1,
since ¢ may be taken arbitrarily small.

Theorem 1. If the Lindelof hypothesis is true, then for k>3
Ay () = Yo Xe 4y XD oy xl/(2k—1)+0(x0k)’

where for every €>0 0, = 1/(2k)+¢, that is, (1.11) holds.

Proof. The Lindelof hypothesis is (see [11], Ch. XIII) that for every
e>0L(1/2+ir)=0 (¢*), and the best estimate kncwn so far is G. A. Kolesnik’s
C(1/2 +it) = O (11731067 jog331/200 £)  proved in 1973. It is known that the Riemann
hypothesis that all non-trivial zeros of the zeta function have the real part
1/2 implies the Lindeldf hypothesis, so that (1.11) holds then under the Rie-
mann hypothesis also.

By lemma 1 it is sufficient to prove (2.1) with v, =1/(2k)+¢c. The
classical method of contour integration is applied to the function H, (s) which is
reguiar except for the esimple poles at s=1/k, 1/(k+1), ..., 1/(2k—1). There-
fore if x is half a large odd integer and b>1/k, then

b+iT
2.2) S hemy= [ Qri)T Hi(s)x*s™t ds+ 0 (x> T~ (b—1/k)~") +
n<<x b—iT

+ O (® (2x) xT~! log x).

For a proof of (2.2), see for example [7]. Here ® (x) stands for a non-decrea-
sing positive function for which A (n)= O (® (n)). Since H, (s) =T (ks) L ((k+
+1)s)- - -L((2k—1)s) we may teke @ (x)=x® for every ¢>0. Therefore for
fixed 1>b>1/k and >0
b-+iT

(2.3) Soh(m)=Q2ni)t [ He(s)xs~1ds+ 0 (x1+e TV,

n<x b-—-iT

The classical residue theorem gives then
b+iT e
Q2ri)! [ Hy(s)x*s7'ds= > Res Hy (s) ¥’s™ 1+ Qmi) ' (I, + I+ 1,

i=k S:lli
b—iT
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where for a<<1/(2k—1) we have

a+iT a—iT b+iT
I = f H (s)x s~ 1ds, I,= f H (s)x*s~'ds, I,= f H, (s) x*s~1 ds.
a—iT b—iT ’ a+iT

If we choose a=1/2k then the Lindelof hypothesis gives H, (s)= O (t*%) for
every ¢>0 when s lies on the segments (e—il, a+iT), (b—iT, a—iT),
(@a+iT, b+iT).

a+iT T

L= [ Hy(s)x s~ ds=0 (x"25) 1 0 ( [ |H, (1/2k) +it) | x'2k -1 dt) =
a—iT 1
=0(x1/2kas)_
b b
L=0( [ |H (@—iT)|x T-1dt)y=0 (*T-* [ tk=dt)=0 (x*T-Y),

end the same estimate holds for I, since b is fixed. On the other hand if we set

2k—1
di= T[] ©(/d, then
j=k, j#i

2k—1 2k—1 .

Res Hy(s) x*s™'= 3 d,x'V},
i—k s=1/i i=k

2k—1 .
(2.9) S (=3 dix"+O(x'+T7)+0 (x'2kT%).
n<lx i=k

If we choose T=x@k-D/2k we obtain the conclusion of the theorem,
since the restriction that x is half an odd integer is clearly irrelevant.

On the other hand, it seems equally interesting to try to find all k& for
wh'ch (1.11) holds unconditionally, without unproved conjectures like Riemann’s
or Lindeldf’s. In this direction the following theorem is proved, which gives
somewhat better values than [6].

Theorem 2. The asymptotic formula (1.11) holds for 2<<k<<6 with
0,=655/4643, 0,=257/2072 and 0,=665613/6227997.

Proof. The case k=2 is not being mentioned because of (1.8). For
k>3 we need the following result of H.-E. Richert [8], which says in a
slightly different notation that if ¥ (x)=x—[x]—1/2, vy>0, x, z>1 and if
(%, 1) is any pair of exponents, then

(2.5) > W (xn=v) =0 (x~ 12 z1+¥12) 4

n<z

O (x¥/+1]og z) A=vyn.

o (xx/(u+1) ZO\—YK)/(K+1)) A>yn
{O(Xx/(l+u—7\+yx)) )\<Yx

The def.nition of a pair of exponents (the theory was founded by Van
ce: Corput, later simplif.ed by Rankin and Phillips) is also given in [8]; let
it be mentioned here only that if (k, /) is a pair of exponents then

Ak, = (KJQk+2), 1/2+1/(2k+2)) and Bk, )—(—1/2, k+1/2)
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are also new pairs of exponents, (0, 1) is a pair of exponents, and for every
pair of exponents (k, /) we have 0<k<<1/2<I<].

The proof of theorem 2 follows closely the proof of Satz 7, p. 319 of
E. Kritzel’s paper [6], but a more general result than his Hilfsatz 1, p. 317
is proved here, which combined with his method of proof and another choice
of the pair of exponents (x, A) leads to somewhat better values of 0,, 6, and
6, than those given by Kritzel in [6], p. 324 (6,=f; in his notation). Follo-
wing [6] let

(2.6) g m=k k+1, ... k+m), d(@,mn)= > 1,

so that d (G, ,;n) is the number of representation of n as n= nsnfthe - onkim

k+m k+m . _
2.7 D@ m¥)=3 d@,mm= 3 [ S0V +A @ mx),
n<x i=k j=k,j#i
(2,8) A (G, i X) = O (x"Feom),
If (k+m)oy ,<1, 1<y<x then Kritzel proved in [6], p. 314

(29) Aak m> X) == z d(ak m—1° n) \F((x/n)ll(k+m)) + o (y-I/(k+m) (x/y)llk) +

n<<xfy

4 0 (yl/(k+m) (x/y)dk"‘—‘ )

If for m>1 we let S, (x,2)= Z d (@, ;1) ¥ ((x/n)!/%+m) then ins-

tead of Hilfsatz 1 of [6], p. 317, the fo]lowmg more general result may be
proved:

(210)  Spm(x, 2)= O 2k ([x)IEkZM) 1 O (28 ko (x[zyd0xe D) ),
where (x, A) is any pair of exponents, B ,=2A/(x+ 1)k and for m>2
Be,m=(1+%x—A(k+ 1) B, mD/(Rx+2-Nk+
+l4ne—A—(Ge+Dkk+1)Briy,m_r)-
To see that (2.10) holds we use induction on m and write

Sk.m(x’ Z)=S1+S2-—S3,
where 1<y<2 and

S, = 2 d(Gksy, m—2sh) z ¥ ((x/mk p)lite+m)y
n<y mkS3in

S,= 2 2 Ay, mo2in) ¥ ((xfmb mytiderm) =

mk<<zly n<zm—k

= z Sk+1 m-— z(x/mk z/mk)

mk<<zly

Sy= 2 d@gpr,mpt) 2 T ((xfmk)titerm)y,
n<y mk<z[y
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When m=1(2.10) follows directly from (2.5), and when m>1 we use
the induction hypothesis to obtain

St,m (X, 2)= O (2VF (z[x)H1k+2m)) 3 O (pHK+D (z[yoct DE (x[zyxle+ D (etm)y 4
+0 ((z/y)llkyﬂk+1, m—1 (x/z)"/(“" 1 (k+m)).

The estimate (2.10) follows if y is chosen in such a way that the second
and third O-term are equal. Putting (2.10) in (2.9) and choosing again y in
such a may that two O-term are equal the following generalization of Satz
7 ([6], p. 319) is obtained:

If (k+m)ay,,,_, <1, then

Q1) agn=
24k oy oy .

: if 3k (x+1 mZ24+ B+ D ko,
‘5k+2m_2(1c+m)m,,,,,,_l Gt 1) Be. ( Y mo
=1 . .
‘ (et 1) B, = % %, moy if 3k (et 1) B =24 (Bt 1) ke m_,

L+@+1) (k+m) Be,m— %%, m—-1)

From Euler’s summation formula it follows for z>0 and z1

212 2 =@+ (1= =x W (1) +0 (x5,

n<<x

which for 1<<a<b leads to the estimate (see [5], pp. 276—277 for details)

(2.13) 7; 1= (b/a) x'/a+ % (a/b) x1/> —
- a§< (F ((xn—b)le)y + ¥ ((xn=9)18) + O (1).

Using (2.5) we obtain
(2.14) o, =@+ e+1)2k+1),
and since from (2.10) we have B ,=(1+»+2)/(x+1) 2k+1) from (2.11)
with the pair of exponents (x, A)=(11/30, 16/30) it follows

2 .
(2.15) ak,zz[(191k+82)/(356k +425k+164) if k<6

68/123 (k+1) if k>6

From this estimate, which is sharper than Kritzel’s (6.11) and (6.12)
([6], p. 320), we deduce with the help of (2.11)

(2.16) s, =655/5643, a,,=257/2072, a,,=665613/6227997.
This proves the theorem, since by lemma 1 we may take 0,=«;,, 0,=0a,

and 6;=«,, Further improvements of the estimate for A (dg,,; x) would give
corresponding improvements of (2.16).
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3. Estimates of 2. o, (n).

n<x

Let us now consider the divisor problem for elements of G (k). If we

define o, (n) = > 1, then o, (n) represents the number of powerful divisors
d|n, dEG (k)
of n and the following theorem holds:

Theorem 3. For k>2

3.1 > o (1) = Fy (1) x+ C, (k) xV/*+ C, (k) 1*k+D 4 A (%),

where for i=0, 1 we have C;(k)=C (1/(k+1) lim F, (s) (k+i)s-1), z,=8/35,
s—1/(k+i)
—28/149, z,= (2k+T7)/Q2k>+ 9k +13) for k=5 and

o (x105/4o7 10g2 x) k=2

(3.2) Ak(x)={ o o

Proof. The error term A, (x) will be seen to be of the same order of
magnitude as the error term A (1, &, k+1; x) for > 1. The estimate of

A(l, 2, 3; x) is closely related to the problem of enumerating finite non-iso-
morphic abelian groups (see [2] and [8]), and the estimate used here is due

to B. R. Srinivasan [9]. An estimate for > o, (n) was obtained in [10] with a

n<x
poorer error term which came from the estimate for A (1, 2, 3: x) given by
Satz 6 of E. Kritzel’s paper [5]; the values for z, and z, given here come
from the estimates of A (1, 3, 4; x) and A(l, 4, 5; x) given by Satz 7, p. 826
of the same paper. For £>5 we may derive a sharper estimate for A (1, k, k+ 1; x)
than the one that follows from Satz 7 of [5]. To see this, observe that from
(2.13) it follows

D, kx)= 3 1-CL@x+L(R 5~ 5 (F((xfn)'™+¥ mH)+0 (1)

and if (2.5) is used with (x, ))=(1/6, 4/6) we obtain A(l, k; x) = O (x}/(k+3)
for k>5. Therefore if k=5, 1<y<{x, 1<<z<x, then

> A1, k; xm=k=1 =0 ( Z (xm—k-)Ulk+3)y — O (x1/(k+3) p2k+1) (k+3)),

mk+1<<y mh+1<<y

3 (1 k5 1) (6] 60) = O (2 (2fx)112K+2) + 0 (- (xf210K+)

similarly to the way (2.10) was obtained, and since by Satz 1 of [5], p. 279
we have with d(a,'b;n)= 2 1

abn
1 2

3.3) ALk, k+1;)= > A, k; xm=*-1)—

mk+1<y

Z d(l k; n)‘F((x/n)”(k“))—l-O(yl/(k+1))+0((x/y) y—ll(k+1))

nsxly



On the asymptotic formulas for powerful numbers 93

we obtain finally
(3.4) Al k,k+1;x)=0 (Uk+3) y2i0k+ 1) e+ 3) 1 O (xy—@k+3i2k+2))
+ 0 ((xly) 10 y1Ok+),

Let now in (3.4) y=x2(k+D(k+2)/2k2+5k+13) Then the first two O-terms
are equal, the third is of a smaller order of magnitude so that for k=5 we have

(3.5) AL, k, k+1; x) = O (xGR+DICR 9k 13),

To prove the theorem note that oy (n)= ; fx (d), so that we have
(3.6) Ve@=3 o mn==%() Fe(s)= B, () G ®),
n=1
where (see (1.5)) for k=2 Gy ()= 5 cp(W)n~*=L ()L (k) L ((k+1)s) and
n=1
Be()= 3 be(n—=
n=1

_ 1/2.(63) k=2
{(C(k+2)s)' C(REk-1)5) o (D/E(RE+2)5)- - L (4 k—2)5)) k=3

Therefore 2, ¢, (M)=D (1, k, k+1; x)= > 1, and for every &>0
n<x

k k+1
nonln2 <x
S | b ()| = O (xUk+2+2), so that A(1, k, k+ 1; x)>O (x!/tk+2+¢), and setting
n<x

A (¥)=A (1, k, k+ 1; x) we obtain from (3.6) by the properties of Dirichlet series
Sam=2 2uDa@d=73 b@n 2 c@m)=
n<x m<x|n

n<x n<x djn

3 b () QUOL (R 1) (xfm+ AR E (G- 1JR) (el +
+ L (/G + DY C (el G+ 1)) G/l D By (efm) =L RYE (ke + 1) (Be (1) ~

— 2 b mn~Y)-x+ (1K) § ((k+ 1)[k) (B, (1/")“,,5 by (n) n=11%) - 1l

n>x

+ 81k + 1)) S+ 1)) (B (1/(k+ 1)) — 2, b (m) =11 . x V=D 1+ O (A (x)).

Partial summation gives for every ¢>0 and y>1/(k+2)

3.7 > by () n=r = O (xMerD+e=y,

n>x

so that putting (3.7) into the preceding equation and collecting terms we obtain
the conclusion of the theorem, since € may be taken arbitrarily small.
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