ON THE ASYMPTOTIC FORMULAS FOR POWERFUL NUMBERS ## Aleksandar Ivić (Communicated October 7, 1977) #### 1. Introduction A natural number is said to be powerful if it contains powers of primes as factors; more precisely let G(k) denote for each fixed natural k>1 the set of all natural numbers with the property that if a prime p divides an element of G(k) then p^k divides it also. In other words the set of powerful numbers G(k) contains for a fixed k numbers whose canonical factorisation is (1) $$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_i^{\alpha_i} \qquad \alpha_j \geq k \text{ for } j = 1, 2, \ldots, i.$$ For each α_j there is a uniquely determined β_j such that $\alpha_j \equiv \beta_j \pmod{n}$ and $k \leq \beta_j \leq 2k-1$, so that every powerful number may be written uniquely in the form (1.2) $$n = a_0^k a_1^{k+1} a_2^{k+2} \cdots a_{k-1}^{2k-1}$$ where $a_1, a_2, \ldots, a_{k-1}$ are squarefree numbers and $(a_i, a_j) = 1$ for $1 \le i < j \le k-1$. Thus if we set $$f_k(n) = \begin{cases} 1 & n \in G(k) \\ 0 & n \notin G(k) \end{cases}, \quad F_k(s) = \sum_{n=1}^{\infty} f_k(n) n^{-s},$$ it follows that (1.3) $$F_k(s) = \prod_{p} (1 + p^{-ks} + p^{-(k+1)s} + \cdots) = \prod_{s=0}^{n} (1 + p^{(1-k)s} (p^s - 1)^{-1}), \text{ or}$$ (1.4) $$F_k(s) = \prod_{p} (1 + p^{-(k+1)s} + p^{-(k+2)s} + \cdots + p^{-(2k-1)s}) \zeta(ks),$$ where for Re s > 1 $\zeta(s) = \prod_{p} (1 - p^{-s})^{-1}$ is Riemann's zeta function. Further factoring gives $$\frac{\zeta(ks)\,\zeta((k+1)\,s)\,\zeta((k+2)\,s)\cdots\zeta((2\,k-1)\,s)}{F_k(s)\,\zeta((2\,k+2)\,s)\,\zeta((2\,k+4)\,s)\cdots\zeta((4\,k-2)\,s)} =$$ $$= \prod_p \frac{(1+p^{-(k+1)\,s})\,(1+p^{-(k+2)\,s})\cdots(1+p^{-(2\,k-1)\,s})}{(1+p^{-(k+1)\,s}+p^{-(k+2)\,s}+\cdots+p^{-(2\,k-1)\,s})} =$$ $$= \prod_p \left(1+\frac{p^{-(2\,k+3)\,s}+p^{-(2\,k+4)\,s}+2\,p^{-(2\,k+5)\,s}+\cdots+p^{-(3\,k^2-3\,k)\,s/2}}{1+p^{-(k+1)\,s}+p^{-(k+2)\,s}+\cdots+p^{-(2\,k-1)\,s}}\right) =$$ $$= \prod_p \left(1+a_k(p,s)\right),$$ where $a_k(p, s) \sim p^{-(2k+3)s}$ for real s as $p \to \infty$, so that (1.5) $$F_k(s) = \frac{\zeta(ks)\zeta((k+1)s)\zeta((k+2))s \cdot \cdot \cdot \zeta((2k-1)s)}{\zeta((2k+2)s)\zeta((2k+4)s \cdot \cdot \cdot \zeta((4k-2)s))} \varphi_k(s),$$ where $\varphi_k(s) = \prod_p (1 + a_k(p, s))^{-1}$ has a Dirichlet series with the abscissa of convergence 1/(2k+3) for k>2 ($\varphi_k(s)=1$ for k=2), so that we may write (1.6) $$F_{k}(s) = G_{k}(s) H_{k}(s),$$ where $$H_k(s) = \sum_{n=1}^{\infty} h_k(n) n^{-s} = \zeta(ks) \zeta((k+1)s) \cdot \cdot \cdot \zeta((2k-1)s)$$ and $$G_{k}(s) = \sum_{n=1}^{\infty} g_{k}(n) n^{-s} = \varphi_{k}(s) \zeta^{-1} ((2k+2)s) \cdot \cdot \cdot \zeta^{-1} ((4k-2)s)$$ is a Dirichlet series with the abscissa of convergence equal to 1/(2k+2). If $A_k(x)$ denotes the number of powerful numbers not exceeding x for a fixed k>2, then we have (1.7) $$A_{k}(x) = \sum_{n \leq x, n \in G(k)} 1 = \sum_{n \leq x} f_{k}(n) = \sum_{mn \leq x} g_{k}(m) h_{k}(n).$$ Powerful numbers were first investigated by P. Erdös and G. Szekeres in [2]. Later researches include [3], [4], [6] and P. Bateman's and E. Grosswald's paper [1] where the following results were obtained: (1.8) $$A_2(x) = (\zeta(3/2)/\zeta(3)) x^{1/2} + (\zeta(2/3)/\zeta(2)) x^{1/3} + O(x^{1/6} \exp(-a\omega(x))),$$ where a>0 and $\omega(x) = (\log x)^{4/7} \cdot \log \log x)^{-3/7}$, (1.9) $$A_3(x) = \gamma_{03} x^{1/3} + \gamma_{13} x^{1/4} + \gamma_{23} x^{1/5} + O(x^{7/46})$$ where γ_{03} , γ_{13} , γ_{23} are computable constants, $$(1.10) A_k(x) = \gamma_{ok} x^{1/k} + \gamma_{1k} x^{1/(k+1)} + \cdots + \gamma_{rk} x^{1/(k+r)} + \Delta_k(x),$$ where r is an integer >1, $r^2/2 < k \le (r+1)^2/2$, γ_{ik} for $i=0, 1, \ldots, r$ are computable constants and $$\Delta_k(x) = \begin{cases} O(x^{r/(kr+2k)} \log^r x) & r^2/2 < k < r(r+1)/2 \\ O(x^{1/(k+r+1)} \log^{r+1} x) & k = r(r+1)/2. \\ O(x^{1/(k+r+1)}) & r(r+1)/2 < k \le (r+1)^2/2 \end{cases}$$ The main purpose of this paper is to give estimates for $A_k(x)$ and $\sum_{n \le x} \alpha_k(n)$, where $\alpha_k(n)$ denotes the number of divisors of n from G(k). I conjecture that for all k > 2 the following formula holds: $$(1.11) A_k(x) = \gamma_{Ok} x^{1/k} + \gamma_{1k} x^{1/(k+1)} + \cdots + \gamma_{k-1,k} x^{1/(2k-1)} + O(x^{\theta k}),$$ where $\gamma_{ik} = \mathop{\rm Res}_{s=1/(k+i)} F_k(s) \, s^{-1}$ for $i=0,\,1,\,\ldots,\,k-1$ and $\theta_k < 1/(2k-1)$. This is proved with $\theta_k = 1/(2k) + \varepsilon$ for every $\varepsilon > 0$ under the truth of the Lindelöf hypothesis, and unconditionally for k < 6 with explicit values of θ_3 , θ_4 and θ_5 . # 2. Estimates of $A_k(x)$. If one uses Bateman's and Grosswald's proof of (1.8) and the estimate $M(x) = \sum_{n \le x} \mu(n) = O(x \cdot \exp(-c \eta(x)))$, where c > 0 and $\eta(x) = (\log x)^{3/5} \cdot (\log \log x)^{-1/5}$, which is due to A. Walfisz [12], then in (1.8) the error term may be replaced by $O(x^{1/6} \cdot \exp(-b \eta(x)))$ where b > 0. It is seen from (1.7) that $$A_k(x)$$ depends on $\sum_{n \le x} h_k(n) = \sum_{\substack{n \le x \\ 0 \text{ if } 1}} 1$, so that one may hope that a sufficiently sharp estimate of $\sum_{n \le x} h_k(n)$ may lead to the conjectured formula (1.11) for $A_k(x)$. This is indeed so, as shown by the following Lemma 1. Suppose that for $1/(2k+2) < \eta_k < 1/(2k-1)$ we have $$(2.1) \qquad \sum_{n \leq x} h_k(n) = \sum_{\substack{n \leq x \\ n \neq i}} 1 = \sum_{k=1}^{2k-1} \left(\prod_{j=k, j \neq i}^{2k-1} \zeta(j/i) \right) x^{1/i} + O(x^{\eta_k}).$$ Then (1.11) holds with $\theta_k = \eta_k$. Proof. $$A_k(x) = \sum_{n \le x} f_k(n) = \sum_{n \le x} g_k(n) \sum_{m \le x/n} h_k(m) =$$ $$= \sum_{n \le x} g_k(n) \sum_{i=k}^{2k-1} c_i x^{1/i} n^{-1/i} + O(x^{\eta_k} \sum_{n \le x} |g_k(n)| n^{-\eta_k}),$$ where $c_i = \prod_{j=k, j \neq i}^{2k-1} \zeta(j/i)$. Since the abscissa of convergence of $G_k(s)$ equals 1/(2k+2) we have $\sum_{n \leq x} |g_k(n)| n^{-n_k} = O(1)$, and partial summation gives for every $\epsilon > 0$ and $i = k, k+1, \ldots, 2k-1$ $$\sum_{n \le x} g_k(n) n^{-1/i} = G_k(1/i) + O(x^{1/(2k+2) + \varepsilon - 1/i}),$$ so that finally $$A_{k}(x) = \sum_{i=k}^{2k-1} c_{i} G_{k}(1/i) x^{1/i} + \sum_{i=k}^{2k-1} O(x^{1/(2k+2)+\epsilon}) + O(x^{\eta_{k}}),$$ which proves (1.11) with $\theta_k = \eta_k$ and $\gamma_{i-k, k} = c_i G(1/i)$ for $i = k, k+1, \ldots, 2k-1$, since ε may be taken arbitrarily small. Theorem 1. If the Lindelöf hypothesis is true, then for $k \ge 3$ $$A_k(x) = \gamma_{0k} x^{1/k} + \gamma_{1k} x^{1/(k+1)} + \cdots + \gamma_{k-1,k} x^{1/(2k-1)} + O(x^{\theta_k}),$$ where for every $\varepsilon > 0$ $\theta_k = 1/(2k) + \varepsilon$, that is, (1.11) holds. Proof. The Lindelöf hypothesis is (see [11], Ch. XIII) that for every $\varepsilon > 0 \zeta(1/2+it) = O(t^{\varepsilon})$, and the best estimate known so far is G. A. Kolesnik's $\zeta(1/2+it) = O(t^{173/1067} \log^{331/200} t)$, proved in 1973. It is known that the Riemann hypothesis that all non-trivial zeros of the zeta function have the real part 1/2 implies the Lindelöf hypothesis, so that (1.11) holds then under the Riemann hypothesis also. By lemma 1 it is sufficient to prove (2.1) with $\eta_k = 1/(2k) + \varepsilon$. The classical method of contour integration is applied to the function $H_k(s)$ which is regular except for the esimple poles at s = 1/k, 1/(k+1), ..., 1/(2k-1). Therefore if x is half a large odd integer and b > 1/k, then (2.2) $$\sum_{n \le x} h_k n = \int_{b-iT}^{b+iT} (2\pi i)^{-1} H_k(s) x^s s^{-1} ds + O(x^b T^{-1} (b-1/k)^{-1}) + O(\Phi(2x) x T^{-1} \log x).$$ For a proof of (2.2), see for example [7]. Here $\Phi(x)$ stands for a non-decreasing positive function for which $h_k(n) = O(\Phi(n))$. Since $H_k(s) = \zeta(ks) \zeta((k+1)s) \cdots \zeta((2k-1)s)$ we may take $\Phi(x) = x^2$ for every $\varepsilon > 0$. Therefore for fixed 1 > b > 1/k and $\varepsilon > 0$ (2.3) $$\sum_{n \le x} h_k(n) = (2 \pi i)^{-1} \int_{b-iT}^{b+iT} H_k(s) x^s s^{-1} ds + O(x^{1+\varepsilon} T^{-1}).$$ The classical residue theorem gives then $$(2\pi i)^{-1} \int_{k=T}^{b+iT} H_k(s) x^s s^{-1} ds = \sum_{i=k}^{2k-1} \operatorname{Res}_{s=1/i} H_k(s) x^s s^{-1} + (2\pi i)^{-1} (I_1 + I_2 + I_3),$$ where for a < 1/(2k-1) we have $$I_{1} = \int_{a-iT}^{a+iT} H_{k}(s) x^{s} s^{-1} ds, \quad I_{2} = \int_{b-iT}^{a-iT} H_{k}(s) x^{s} s^{-1} ds, \quad I_{3} = \int_{a+iT}^{b+iT} H_{k}(s) x^{s} s^{-1} ds.$$ If we choose a = 1/2k then the Lindelöf hypothesis gives $H_k(s) = O(t^{k\epsilon})$ for every $\epsilon > 0$ when s lies on the segments (a-iT, a+iT), (b-iT, a-iT), (a+iT, b+iT). $$I_{1} = \int_{a-iT}^{a+iT} H_{k}(s) x^{s} s^{-1} ds = O(x^{1/2k}) + O(\int_{1}^{T} |H_{k}(1/(2k) + it)| x^{1/2k} t^{-1} dt) =$$ $$= O(x^{1/2k} T^{k \epsilon}).$$ $$I_{2} = O(\int_{1}^{b} |H_{k}(t - iT)| x^{t} T^{-1} dt) = O(x^{b} T^{-1} \int_{1}^{b} t^{k \epsilon} dt) = O(x^{b} T^{-1}),$$ and the same estimate holds for I_3 since b is fixed. On the other hand if we set $$d_{i} = \prod_{j=k, j \neq i}^{2k-1} \zeta(j/i), \text{ then}$$ $$\sum_{i=k}^{2k-1} \operatorname{Res}_{s=1/i} H_{k}(s) x^{s} s^{-1} = \sum_{i=k}^{2k-1} d_{i} x^{1/i},$$ $$\sum_{n \leq x} h_{k}(n) = \sum_{i=k}^{2k-1} d_{i} x^{1/i} + O(x^{1+\varepsilon} T^{-1}) + O(x^{1/2k} T^{k\varepsilon}).$$ (2.4) If we choose $T = x^{(2k-1)/2k}$ we obtain the conclusion of the theorem, since the restriction that x is half an odd integer is clearly irrelevant. On the other hand, it seems equally interesting to try to find all k for which (1.11) holds unconditionally, without unproved conjectures like Riemann's or Lindelöf's. In this direction the following theorem is proved, which gives somewhat better values than [6]. Theorem 2. The asymptotic formula (1.11) holds for 2 < k < 6 with $\theta_3 = 655/4643$, $\theta_4 = 257/2072$ and $\theta_5 = 665613/6227997$. Proof. The case k=2 is not being mentioned because of (1.8). For $k \ge 3$ we need the following result of H.-E. Richert [8], which says in a slightly different notation that if $\Psi(x) = x - [x] - 1/2$, $\gamma > 0$, x, z > 1 and if (x, λ) is any pair of exponents, then (2.5) $$\sum_{n \leq z} \Psi(xn^{-\gamma}) = O(x^{-1/2}z^{1+\gamma/2}) + \begin{cases} O(x^{\varkappa/(\varkappa+1)}z^{(\lambda-\gamma\varkappa)/(\varkappa+1)}) & \lambda > \gamma\varkappa \\ O(x^{\varkappa/(\varkappa+1)}\log z) & \lambda = \gamma\varkappa \\ O(x^{\varkappa/(1+\varkappa-\lambda+\gamma\varkappa)}) & \lambda < \gamma\varkappa \end{cases}$$ The definition of a pair of exponents (the theory was founded by Van de: Corput, later simplified by Rankin and Phillips) is also given in [8]; let it be mentioned here only that if (k, l) is a pair of exponents then $$A(k, l) = (k/(2k+2), 1/2 + l/(2k+2))$$ and $B(k, l) = (l-1/2, k+1/2)$ are also new pairs of exponents, (0, 1) is a pair of exponents, and for every pair of exponents (k, l) we have $0 \le k \le 1/2 \le l \le 1$. The proof of theorem 2 follows closely the proof of Satz 7, p. 319 of E. Krätzel's paper [6], but a more general result than his Hilfsatz 1, p. 317 is proved here, which combined with his method of proof and another choice of the pair of exponents (κ, λ) leads to somewhat better values of θ_3 , θ_4 and θ_5 than those given by Krätzel in [6], p. 324 $(\theta_k = \beta_k)$ in his notation). Following [6] let (2.6) $$\bar{a}_{k,m} = (k, k+1, \ldots, k+m), \ d(\bar{a}_{k,m}; n) = \sum_{\substack{n_0^k n_1^{k+1} \cdots n_m^{k+m} = n}} 1,$$ so that $d(\bar{a}_{k,m};n)$ is the number of representation of n as $n=n_0^k n_1^{k+1} \cdots n_m^{k+m}$, (2.7) $$D(\bar{a}_{k,m};x) = \sum_{n < x} d(\bar{a}_{k,m};n) = \sum_{i=k}^{k+m} \prod_{j=k, j \neq i}^{k+m} \zeta(j/i) x^{1/i} + \Delta(\bar{a}_{k,m};x),$$ (2,8) $$\Delta \left(\bar{a}_{k,m} : x\right) = O\left(x^{\alpha_{k,m}}\right).$$ If $(k+m) \alpha_{k,m} < 1$, $1 \le y \le x$ then Krätzel proved in [6], p. 314 (2.9) $$\Delta \bar{a}_{k,m}; x) = -\sum_{n \leq x/y} d(\bar{a}_{k,m-1}; n) \Psi((x/n)^{1/(k+m)}) + O(y^{-1/(k+m)}(x/y)^{1/k}) + O(y^{1/(k+m)}(x/y)\alpha_k^{m-1}).$$ If for $m \ge 1$ we let $S_{k,m}(x,z) = \sum_{n \le z} d(\bar{a}_{k,m-1};n) \Psi((x/n)^{1/(k+m)})$ then instead of Hilfsatz 1 of [6], p. 317, the following more general result may be proved: $$(2.10) S_{k,m}(x,z) = O(z^{1/k}(z/x)^{1/(2k+2m)}) + O(z^{\beta k, m}(x/z)^{x/(x+1)(k+m)}),$$ where (x, λ) is any pair of exponents, $\beta_{k,1} = \lambda/(x+1) k$ and for $m \ge 2$ $$\beta_{k,m} = (1 + \varkappa - \lambda (k+1) \beta_{k+1,m-1}) / ((2\varkappa + 2 - \lambda) k + 1 + \varkappa - \lambda - (\varkappa + 1) k (k+1) \beta_{k+1,m-1}).$$ To see that (2.10) holds we use induction on m and write $$S_{k,m}(x, z) = S_1 + S_2 - S_3,$$ where $1 \le y \le 2$ and $$\begin{split} S_1 &= \sum_{n \leq y} d\left(\bar{a}_{k+1, \ m-2}; n\right) \sum_{m^k \leq z/n} \Psi\left((x/m^k \ n)^{1/(k+m)}\right), \\ S_2 &= \sum_{m^k \leq z/y} \sum_{n \leq zm-k} d\left(\bar{a}_{k+1, \ m-2}; n\right) \Psi\left((x/m^k \ n)^{1/(k+m)}\right) = \\ &= \sum_{m^k \leq z/y} S_{k+1, \ m-2} \left(x/m^k, \ z/m^k\right), \\ S_3 &= \sum_{n \leq y} d\left(\bar{a}_{k+1, \ m-2}; n\right) \sum_{m^k \leq z/y} \Psi\left((x/m^k)^{1/(k+m)}\right). \end{split}$$ When m=1 (2.10) follows directly from (2.5), and when m>1 we use the induction hypothesis to obtain $$S_{k,m}(x, z) = O(z^{1/k}(z/x)^{1/(2k+2m)}) + O(y^{1/(k+1)}(z/y)^{\lambda/(x+1)k}(x/z)^{\kappa/(x+1)(k+m)}) + O((z/y)^{1/k}y^{\beta_{k+1,m-1}}(x/z)^{\kappa/(x+1)(k+m)}).$$ The estimate (2.10) follows if y is chosen in such a way that the second and third O-term are equal. Putting (2.10) in (2.9) and choosing again y in such a may that two O-term are equal the following generalization of Satz 7 ([6], p. 319) is obtained: If $(k+m) \alpha_{k,m-1} \leq 1$, then $$(2.11) \qquad \alpha_{k,m} = \begin{cases} \frac{2 + k \alpha_{k,m-1}}{5k + 2m - 2(k+m)\alpha_{k,m-1}} & \text{if } 3k (x+1) \beta_{k,m} \leq 2 + (3x+1) k \alpha_{k,m-1} \\ \frac{(x+1) \beta_{k,m} - x \alpha_{k,m-1}}{1 + (x+1) (k+m) (\beta_{k,m} - \alpha_{k,m-1})} & \text{if } 3k (x+1) \beta_{k,m} \geq 2 + (3x+1) k \alpha_{k,m-1} \end{cases}$$ From Euler's summation formula it follows for z>0 and $z\neq 1$ (2.12) $$\sum_{n \leq x} n^{-z} = \zeta(z) + x^{1-z} (1-z)^{-1} - x^{-z} \Psi(x) + O(x^{-z-1}),$$ which for $1 \le a < b$ leads to the estimate (see [5], pp. 276—277 for details) (2.13) $$\sum_{m^{a}n^{b} \leq x} 1 = \zeta (b/a) x^{1/a} + \zeta (a/b) x^{1/b} - \sum_{n^{a+b} \leq x} (\Psi ((xn^{-b})^{1/a}) + \Psi ((xn^{-a})^{1/b}) + O (1).$$ Using (2.5) we obtain (2.14) $$\alpha_{k,1} = (x + \lambda)/(x + 1) (2k + 1),$$ and since from (2.10) we have $\beta_{k,2} = (1+\kappa+\lambda)/(\kappa+1)$ (2k+1) from (2.11) with the pair of exponents $(\kappa, \lambda) = (11/30, 16/30)$ it follows (2.15) $$\alpha_{k,2} = \begin{cases} (191 \, k + 82) / (356 \, k^2 + 425 \, k + 164) & \text{if } k \leq 6 \\ 68 / 123 \, (k+1) & \text{if } k > 6 \end{cases}.$$ From this estimate, which is sharper than Krätzel's (6.11) and (6.12) ([6], p. 320), we deduce with the help of (2.11) (2.16) $$\alpha_{3,2} = 655/5643, \ \alpha_{4,3} = 257/2072, \ \alpha_{5,4} = 665613/6227997.$$ This proves the theorem, since by lemma 1 we may take $\theta_3 = \alpha_{3,2}$, $\theta_4 = \alpha_{4,3}$ and $\theta_5 = \alpha_{5,4}$. Further improvements of the estimate for $\Delta(\bar{a}_{k,2}; x)$ would give corresponding improvements of (2.16). 3. Estimates of $$\sum_{n \le x} \alpha_k(n)$$. Let us now consider the divisor problem for elements of G(k). If we define $\alpha_k(n) = \sum_{\substack{d \mid n, \ d \in G(k)}} 1$, then $\alpha_k(n)$ represents the number of powerful divisors of n and the following theorem holds: Theorem 3. For k>2 (3.1) $$\sum_{n \le x} \alpha_k(n) = F_k(1) x + C_0(k) x^{1/k} + C_1(k)^{1/(k+1)} + \Delta_k(x),$$ where for i = 0, 1 we have $C_i(k) = \zeta(1/(k+i)) \lim_{s \to 1/(k+i)} F_k(s)((k+i)s-1)$, $z_3 = 8/35$, $z_4 = 28/149$, $z_k = (2k+7)/(2k^2+9k+13)$ for $k \ge 5$ and (3.2) $$\Delta_k(x) = \begin{cases} O(x^{105/407} \log^2 x) & k=2\\ O(x^{z_k}) & k \ge 3 \end{cases}.$$ Proof. The error term $\Delta_k(x)$ will be seen to be of the same order of magnitude as the error term $\Delta(1, k, k+1; x)$ for $\sum_{n_0 n_1^k n_2^{k+1} \le x} 1$. The estimate of $\Delta(1, 2, 3; x)$ is closely related to the problem of enumerating finite non-isomorphic abelian groups (see [2] and [8]), and the estimate used here is due to B. R. Srinivasan [9]. An estimate for $\sum_{n \leq x} \alpha_2(n)$ was obtained in [10] with a poorer error term which came from the estimate for $\Delta(1, 2, 3; x)$ given by Satz 6 of E. Krätzel's paper [5]; the values for z_3 and z_4 given here come from the estimates of $\Delta(1, 3, 4; x)$ and $\Delta(1, 4, 5; x)$ given by Satz 7, p. 826 of the same paper. For $k \geq 5$ we may derive a sharper estimate for $\Delta(1, k, k+1; x)$ than the one that follows from Satz 7 of [5]. To see this, observe that from (2.13) it follows $$D(1, k; x) = \sum_{mnk \le x} 1 = \zeta(k) x + \zeta(1/k) x^{1/k} - \sum_{nk+1 < x} (\Psi((x/n)^{1/k}) + \Psi(xn^{-k})) + O(1)$$ and if (2.5) is used with $(\kappa, \lambda) = (1/6, 4/6)$ we obtain $\Delta(1, k; x) = O(x^{1/(k+3)})$ for $k \ge 5$. Therefore if $k \ge 5$, $1 \le y \le x$, $1 \le z \le x$, then $$\sum_{m^{k+1} \le y} \Delta(1, k; xm^{-k-1}) = O\left(\sum_{m^{k+1} \le y} (xm^{-k-1})^{1/(k+3)}\right) = O\left(x^{1/(k+3)} y^{2/(k+1)(k+3)}\right),$$ $$\sum_{n \le z} d(1, k; n) \Psi\left((x/n)^{1/(k+1)}\right) = O\left(z \cdot (z/x)^{1/(2k+2)}\right) + O\left(z^{4/9} \cdot (x/z)^{2/(9k+9)}\right)$$ similarly to the way (2.10) was obtained, and since by Satz 1 of [5], p. 279 we have with $d(a, b; n) = \sum_{n=0}^{\infty} 1$ (3.3) $$\Delta(1, k, k+1; x) = \sum_{mk+1 \le y} \Delta(1, k; xm^{-k-1}) - \sum_{n \le x/y} d(1, k; n) \Psi((x/n)^{1/(k+1)}) + O(y^{1/(k+1)}) + O((x/y) \cdot y^{-1/(k+1)}),$$ we obtain finally (3.4) $$\Delta(1, k, k+1; x) = O(\frac{1/(k+3)}{y^{2/(k+1)}(k+3)}) + O(xy^{-(2k+3)/(2k+2)}) + O((x/y)^{4/9}y^{2/(9k+9)}).$$ Let now in (3.4) $y = x^{2(k+1)(k+2)/(2k^2+9k+13)}$. Then the first two *O*-terms are equal, the third is of a smaller order of magnitude so that for $k \ge 5$ we have (3.5) $$\Delta(1, k, k+1; x) = O(x^{(2k+7)/(2k^2+9k+13)}).$$ To prove the theorem note that $\alpha_k(n) = \sum_{d|n} f_k(d)$, so that we have (3.6) $$V_{k}(s) = \sum_{n=1}^{\infty} \alpha_{k}(n) n^{-s} = \zeta(s) F_{k}(s) = B_{k}(s) C_{k}(s),$$ where (see (1.5)) for $k \ge 2$ $C_k(s) = \sum_{n=1}^{\infty} c_k(n) n^{-s} = \zeta(s) \zeta(ks) \zeta((k+1) s)$ and $$B_{k}(s) = \sum_{n=1}^{\infty} b_{k}(n) n^{-s} = \begin{cases} 1/\zeta (6s) & k=2\\ (\zeta (k+2)s) \cdots \zeta ((2k-1)s) \varphi_{k}(s)/(\zeta ((2k+2)s) \cdots \zeta ((4k-2)s)) & k \ge 3 \end{cases}$$ Therefore $\sum_{n \le x} c_k(n) = D(1, k, k+1; x) = \sum_{n_0, n_1^k, n_2^{k+1} \le x} 1$, and for every $\varepsilon > 0$ $\sum_{n \le x} |b_k(n)| = O(x^{1/(k+2)+\varepsilon}), \text{ so that } \Delta(1, k, k+1; x) > O(x^{1/(k+2)+\varepsilon}), \text{ and setting } \Delta_k(x) = \Delta(1, k, k+1; x) \text{ we obtain from (3.6) by the properties of Dirichlet series}$ $$\sum_{n \leq x} \alpha_k(n) = \sum_{n \leq x} \sum_{d/n} b_k(d) c_k(n/d) = \sum_{n \leq x} b_k(n) \sum_{m \leq x/n} c_k(m) =$$ $$\sum_{n \leq x} b_k(n) (\zeta(k) \zeta(k+1) (x/n) + \zeta(1/k) \zeta((k+1)/k) (x/n)^{1/k} +$$ $$+ \zeta((1/(k+1)) \zeta(k/(k+1)) (x/n)^{1/(k+1)} + \Delta_k(x/n)) = \zeta(k) \zeta(k+1) (B_k(1) -$$ $$- \sum_{n > x} b_k(n) n^{-1}) \cdot x + \zeta(1/k) \zeta((k+1)/k) (B_k(1/k) - \sum_{n > x} b_k(n) n^{-1/k}) \cdot x^{1/k} +$$ $$+ \zeta(1/(k+1)) \zeta(k/(k+1)) (B_k(1/(k+1)) - \sum_{n > x} b_k(n) n^{-1/(k+1)}) \cdot x^{1/(k+1)} + O(\Delta_k(x)).$$ Partial summation gives for every $\varepsilon > 0$ and y > 1/(k+2) (3.7) $$\sum_{n>x} b_k(n) n^{-y} = O(x^{1/(k+2)+\varepsilon-y}),$$ so that putting (3.7) into the preceding equation and collecting terms we obtain the conclusion of the theorem, since ε may be taken arbitrarily small. ### REFERENCES - [1] P. T. Bateman, E. Grosswald, On a theorem of Erdös and Szekeres, Illinois Journal of Mathematics, 2 (1958), pp. 88—98. - [2] P. Erdös, G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math. Szeged, 7 (1935), pp. 95—102. - [3] S. W. Golomb, Powerful numbers, The Amer. Math. Monthly, 8 (1970), pp. 848-852. - [4] A. Ivić, An asymptotic formula for elements of a semigroup of integers, Matematički Vesnik, Belgrade 10 (25) Sv. 3, 1973, pp. 255—257. - [5] E. Krätzel, Teiler probleme in drei Dimensionen, Math. Nachrichten, 42 (1969), pp. 275—288. - [6] E. Krätzel, Zahlen k-ter Art, Amer. Journal of Math., 94 (1972) pp. 309-328. - [7] K. Prachar, Primzahlvertreilung, Springer Verlag, 1957. - [8] H.-E. Richert, Über die Anzahl Abelscher Gruppen gegebener Ordnung I, Math. Zeitschrift 56 (1), 1952, pp. 21-32. - [9] B. R. Srinivasan, On the number of abelian groups of a given order, Acta Arithmetica, 23 (1973), pp. 195—205. - [10] D. Suryanarayana, R. Sita Rama Chandra Rao, The number of square-full divisors of an integer, Proc. Amer. Math. Soc., 34 (1), 1972, pp. 79—80. - [11] E. C. Titchmarsh, The theory of the Riemann zeta function, Oxford, 1951. - [12] A. Walfisz, Weylsche Exponontialsummen in der neuren Zahlentheorie, VEB Deutscher Verlag der Wiss., Berlin, 1963. Aleksandar Ivić Rudarsko-geološki fakultet Đušina 7, 11000 Beograd