[go: up one dir, main page]

login
Search: a065096 -id:a065096
     Sort: relevance | references | number | modified | created      Format: long | short | data
Second convolution of A065096.
+20
1
0, 0, 1, 12, 98, 684, 4403, 27048, 161412, 945288, 5466549, 31340628, 178604998, 1013573652, 5735117479, 32385232272, 182622362504, 1028897389008, 5793703249449, 32615362319580, 183593293074730, 1033535639454780, 5819389057957211, 32775522041862072, 184658694508103180
OFFSET
0,4
FORMULA
G.f. = (G.f. of A065096)^2.
Recurrence: (n+6)*a(n) = 225*(6-n)*a(n-8) + 1020*(2*n-9)*a(n-7) + 5164*(3-n)*a(n-6) + 76*(78*n-117)*a(n-5) - 3590*n*a(n-4) + 36*(34*n+51)*a(n-3) - 236*(n+3)*a(n-2) + 12*(2*n+9)*a(n-1), n>=8.
Recurrence (of order 2): (n-2)*(n+6)*a(n) = 3*(n+1)*(2*n+3)*a(n-1) - n*(n+1)*a(n-2). - Vaclav Kotesovec, Mar 05 2014
a(n) ~ (3*sqrt(2)-4)^(7/2) * (3+2*sqrt(2))^(n+6) / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 05 2014
MATHEMATICA
CoefficientList[Series[(1-3*x-Sqrt[1-6*x+x^2])^4/(16*x^3)^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 05 2014 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0], Vec((1-3*x-sqrt(1-6*x+x^2))^4/(16*x^3)^2)) \\ G. C. Greubel, Apr 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Fung Lam, Mar 04 2014
STATUS
approved
Schroeder's second problem (generalized parentheses); also called super-Catalan numbers or little Schroeder numbers.
(Formerly M2898 N1163)
+10
236
1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, 2646723, 13648869, 71039373, 372693519, 1968801519, 10463578353, 55909013009, 300159426963, 1618362158587, 8759309660445, 47574827600981, 259215937709463, 1416461675464871
OFFSET
0,3
COMMENTS
If you are looking for the Schroeder numbers (a.k.a. large Schroder numbers, or big Schroeder numbers), see A006318.
Yang & Jiang (2021) call these the small 2-Schroeder numbers. - N. J. A. Sloane, Mar 28 2021
There are two schools of thought about the index for the first term. I prefer the indexing a(0) = a(1) = 1, a(2) = 3, a(3) = 11, etc.
a(n) is the number of ways to insert parentheses in a string of n+1 symbols. The parentheses must be balanced but there is no restriction on the number of pairs of parentheses. The number of letters inside a pair of parentheses must be at least 2. Parentheses enclosing the whole string are ignored.
Also length of list produced by a variant of the Catalan producing iteration: replace each integer k with the list 0,1,..,k,k+1,k,...,1,0 and get the length a(n) of the resulting (flattened) list after n iterations. - Wouter Meeussen, Nov 11 2001
Stanley gives several other interpretations for these numbers.
Number of Schroeder paths of semilength n (i.e., lattice paths from (0,0) to (2n,0), with steps H=(2,0), U=(1,1) and D(1,-1) and not going below the x-axis) with no peaks at level 1. Example: a(2)=3 because among the six Schroeder paths of semilength two HH, UHD, UUDD, HUD, UDH and UDUD, only the first three have no peaks at level 1. - Emeric Deutsch, Dec 27 2003
a(n+1) is the number of Dyck n-paths in which the interior vertices of the ascents are colored white or black. - David Callan, Mar 14 2004
Number of possible schedules for n time slots in the first-come first-served (FCFS) printer policy.
Also row sums of A086810, A033282, A126216. - Philippe Deléham, May 09 2004
a(n+1) is the number of pairs (u,v) of same-length compositions of n, 0's allowed in u but not in v and u dominates v (meaning u_1 >= v_1, u_1 + u_2 >= v_1 + v_2 and so on). For example, with n=2, a(3) counts (2,2), (1+1,1+1), (2+0,1+1). - David Callan, Jul 20 2005
The big Schroeder number (A006318) is the number of Schroeder paths from (0,0) to (n,n) (subdiagonal paths with steps (1,0) (0,1) and (1,1)). These paths fall in two classes: those with steps on the main diagonal and those without. These two classes are equinumerous and the number of paths in either class is the little Schroeder number a(n) (half the big Schroeder number). - Marcelo Aguiar (maguiar(AT)math.tamu.edu), Oct 14 2005
With offset 0, a(n) = number of (colored) Motzkin (n-1)-paths with each upstep U getting one of 2 colors and each flatstep F getting one of 3 colors. Example. With their colors immediately following upsteps/flatsteps, a(2) = 3 counts F1, F2, F3 and a(3)=11 counts U1D, U2D, F1F1, F1F2, F1F3, F2F1, F2F2, F2F3, F3F1, F3F2, F3F3. - David Callan, Aug 16 2006
Shifts left when INVERT transform applied twice. - Alois P. Heinz, Apr 01 2009
Number of increasing tableaux of shape (n,n). An increasing tableau is a semistandard tableaux with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. Example: a(2) = 3 because of the three tableaux (12)(34), (13)(24), (12)(23). - Oliver Pechenik, Apr 22 2014
Number of ordered trees with no vertex of outdegree 1 and having n+1 leaves (called sometimes Schröder trees). - Emeric Deutsch, Dec 13 2014
Number of dissections of a convex (n+2)-gon by nonintersecting diagonals. Example: a(2)=3 because for a square ABCD we have (i) no diagonal, (ii) dissection with diagonal AC, and (iii) dissection with diagonal BD. - Emeric Deutsch, Dec 13 2014
The little Schroeder numbers are the moments of the Marchenko-Pastur law for the case c=2 (although the moment m0 is 1/2 instead of 1): 1/2, 1, 3, 11, 45, 197, 903, ... - Jose-Javier Martinez, Apr 07 2015
Number of generalized Motzkin paths with no level steps at height 0, from (0,0) to (2n,0), and consisting of steps U=(1,1), D=(1,-1) and H2=(2,0). For example, for n=3, we have the 11 paths: UDUDUD, UUDDUD, UDUUDD, UH2DUD, UDUH2D, UH2H2D, UUDUDD, UUUDDD, UUH2DD, UUDH2D, UH2UDD. - José Luis Ramírez Ramírez, Apr 20 2015
REVERT transform of A225883. - Vladimir Reshetnikov, Oct 25 2015
Total number of (nonempty) faces of all dimensions in the associahedron K_{n+1} of dimension n-1. For example, K_4 (a pentagon) includes 5 vertices and 5 edges together with K_4 itself (5 + 5 + 1 = 11), while K_5 includes 14 vertices, 21 edges and 9 faces together with K_5 itself (14 + 21 + 9 + 1 = 45). - Noam Zeilberger, Sep 17 2018
a(n) is the number of interval posets of permutations with n minimal elements that have exactly two realizers, up to a shift by 1 in a(4). See M. Bouvel, L. Cioni, B. Izart, Theorem 17 page 13. - Mathilde Bouvel, Oct 21 2021
a(n) is the number of sequences of nonnegative integers (u_1, u_2, ..., u_n) such that (i) u_1 = 1, (ii) u_i <= i for all i, (iii) the nonzero u_i are weakly increasing. For example, a(2) = 3 counts 10, 11, 12, and a(3) = 11 counts 100, 101, 102, 103, 110, 111, 112, 113, 120, 122, 123. See link below. - David Callan, Dec 19 2021
a(n) is the number of parking functions of size n avoiding the patterns 132 and 213. - Lara Pudwell, Apr 10 2023
a(n+1) is the number of Schroeder paths from (0,0) to (2n,0) in which level steps at height 0 come in 2 colors. - Alexander Burstein, Jul 23 2023
REFERENCES
D. Arques and A. Giorgetti, Une bijection géometrique entre une famille d'hypercartes et une famille de polygones énumérées par la série de Schroeder, Discrete Math., 217 (2000), 17-32.
P Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
N. Bernasconi et al., On properties of random dissections and triangulations, Combinatorica, 30 (6) (2010), 627-654.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 618.
Cameron, Peter J. Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See p. 155, also p. 179, line -9. - N. J. A. Sloane, Apr 18 2014
C. Coker, A family of eigensequences, Discrete Math. 282 (2004), 249-250.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 57.
D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From N. J. A. Sloane, May 11 2012
E. Deutsch, A bijective proof of an equation linking the Schroeder numbers, large and small, Discrete Math., 241 (2001), 235-240.
Doslic, Tomislav and Veljan, Darko. Logarithmic behavior of some combinatorial sequences. Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019) - From N. J. A. Sloane, May 01 2012
Drmota, Michael; de Mier, Anna; Noy, Marc. Extremal statistics on non-crossing configurations. Discrete Math. 327 (2014), 103--117. MR3192420. See Eq. (2). - N. J. A. Sloane, May 18 2014
I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing permutations, Discrete Math., 204 (1999), 203-229, Section 3.1.
D. Foata and D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Comb Thy A 80 380-384 1997
Wolfgang Gatterbauer, Dan Suciu, Dissociation and propagation for approximate lifted inference with standard relational database management systems, The VLDB Journal, February 2017, Volume 26, Issue 1, pp. 5-30; DOI 10.1007/s00778-016-0434-5
Ivan Geffner, Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3
D. Gouyou-Beauchamps and B. Vauquelin, Deux proprietes combinatoires des nombres de Schroeder, Theor. Inform. Appl., 22 (1988), 361-388.
N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
P.-Y. Huang, S.-C. Liu, Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
D. E. Knuth, The Art of Computer Programming, Vol. 1, various sections (e.g. p. 534 of 2nd ed.).
D. E. Knuth, The Art of Computer Programming, Vol. 1, (p. 539 of 3rd ed.).
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.2.1.6, Problem 66, p. 479.
J. S. Lew, Polynomial enumeration of multidimensional lattices, Math. Systems Theory, 12 (1979), 253-270.
Ana Marco, J.-J. Martinez, A total positivity property of the Marchenko-Pastur Law, Electronic Journal of Linear Algebra, 30 (2015), #7.
T. S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc., 54 (1948), 352-360.
L. Ozsvart, Counting ordered graphs that avoid certain subgraphs, Discr. Math., 339 (2016), 1871-1877.
R. C. Read, On general dissections of a polygon, Aequat. Mathem. 18 (1978) 370-388, Table 6
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 168.
E. Schroeder, Vier combinatorische Probleme, Zeit. f. Math. Phys., 15 (1870), 361-376.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 178; see page 239, Exercise 6.39b.
H. N. V. Temperley and D. G. Rogers, A note on Baxter's generalization of the Temperley-Lieb operators, pp. 324-328 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.
I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 198.
Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1312 (first 200 terms from T. D. Noe)
J. Abate and W. Whitt, Integer Sequences from Queueing Theory , J. Int. Seq. 13 (2010), 10.5.5, p_n(1).
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
Marcelo Aguiar and Walter Moreira, Combinatorics of the free Baxter algebra, arXiv:math/0510169 [math.CO], 2005-2007, see Corollary 3.3.iii.
Axel Bacher, Directed and multi-directed animals on the square lattice with next nearest neighbor edges, arXiv preprint arXiv:1301.1365 [math.CO], 2013. - From N. J. A. Sloane, Feb 04 2013
C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating functions for generating trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
E. Barcucci, E. Pergola, R. Pinzani and S. Rinaldi, ECO method and hill-free generalized Motzkin paths, Séminaire Lotharingien de Combinatoire, B46b (2001), 14 pp.
Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo and Matteo Silimbani, Ascending runs in permutations and valued Dyck paths, Ars Mathematica Contemporanea (2019) Vol. 16, No. 2, 445-463.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.
Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.
Karin Baur and P. P. Martin, The fibres of the Scott map on polygon tilings are the flip equivalence classes, arXiv preprint arXiv:1601.05080 [math.CO], 2016.
Karin Baur and Paul P. Martin, A generalised Euler-Poincaré formula for associahedra, arXiv:1711.04986 [math.CO], 2017.
Arkady Berenstein, Vladimir Retakh, Christophe Reutenauer and Doron Zeilberger, The Reciprocal of Sum_{n >= 0} a^n b^n for non-commuting a and b, Catalan numbers and non-commutative quadratic equations, arXiv preprint arXiv:1206.4225 [math.CO], 2012.
Julia E. Bergner, Cedric Harper, Ryan Keller and Mathilde Rosi-Marshall, Action graphs, planar rooted forests, and self-convolutions of the Catalan numbers, arXiv:1807.03005 [math.CO], 2018.
F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
D. Birmajer, J. B. Gil and M. D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015.
Daniel Birmajer and Juan B. Gil, Michael D. Weiner, A family of Bell transformations, arXiv:1803.07727 [math.CO], 2018.
Natasha Blitvić and Einar Steingrímsson, Permutations, moments, measures, arXiv:2001.00280 [math.CO], 2020.
J. Bloom and A, Burstein, Egge triples and unbalanced Wilf-equivalence, arXiv preprint arXiv:1410.0230 [math.CO], 2014.
Miklós Bóna, Cheyne Homberger, Jay Pantone, and Vince Vatter, Pattern-avoiding involutions: exact and asymptotic enumeration, arxiv:1310.7003 [math.CO], 2013.
Mathilde Bouvel, Cedric Chauve, Marni Mishna and Dominique Rossin, Average-case analysis of perfect sorting by reversals, arXiv preprint arXiv:1201.0940 [cs.DM], 2012.
M. Bouvel, L. Cioni and B. Izart, The interval posets of permutations seen from the decomposition tree perspective, arXiv:2110.10000 [math.CO], 2021. See Theorem 17 p. 13.
Kevin Brown, Hipparchus on Compound Statements, 1994-2010.
Alexander Burstein and Opel Jones, Enumeration of Dumont permutations avoiding certain four-letter patterns, arXiv:2002.12189 [math.CO], 2020.
Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
Freddy Cachazo, Karen Yeats and Samuel Yusim, Compatible Cycles and CHY Integrals, arXiv:1907.12661 [math-ph], 2019.
Fangfang Cai, Qing-Hu Hou, Yidong Sun and Arthur L.B. Yang, Combinatorial identities related to 2X2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO], 2018.
H. Cambazard and N. Catusse, Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the Plane, arXiv preprint arXiv:1512.06649 [cs.DS], 2015.
David Callan, Some bijections for lattice paths, arXiv:2112.05241 [math.CO], 2021.
Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102.
P. J. Cameron, Some sequences of integers, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).
Grégory Chatel, Vincent Pilaud and Viviane Pons, The weak order on integer posets, arXiv:1701.07995 [math.CO], 2017.
W. Y. C. Chen, T. Mansour and S. H. F. Yan, Matchings avoiding partial patterns, arXiv:math/0504342 [math.CO], 2005.
William Y. C. Chen and Carol J. Wang, Noncrossing Linked Partitions and Large (3, 2)-Motzkin Paths, Discrete Math., 312 (2012), 1918-1922. - N. J. A. Sloane, Jun 08 2012
Z. Chen and H. Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 [math.CO] (2016), eq (1.13) a=1, b=2.
J. Cigler, Ramanujan's q-continued fractions and Schröder-like numbers, arXiv:1210.0372 [math.HO], 2012. - N. J. A. Sloane, Dec 29 2012
J. Cigler, Hankel determinants of some polynomial sequences, arXiv:1211.0816 [math.CO], 2012.
Dennis E. Davenport, Louis W. Shapiro and Leon C. Woodson, A bijection between the triangulations of convex polygons and ordered trees, Integers (2020) Vol. 20, Article #A8.
Vesselin Drensky, Graded Algebras, Algebraic Functions, Planar Trees, and Elliptic Integrals, arXiv:2004.05596 [math.RA], 2020, see p. 20.
Rosena R. X. Du, Xiaojie Fan and Yue Zhao, Enumeration on row-increasing tableaux of shape 2 X n, arXiv:1803.01590 [math.CO], 2018.
I. M. H. Etherington, Non-associate powers and a functional equation, Math. Gaz. 21 (1937), 36-39; addendum 21 (1937), 153.
I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. [Annotated scanned copy]. Part II [not scanned] is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
S.-P. Eu and T.-S. Fu, A simple proof of the Aztec diamond problem, arXiv:math/0412041 [math.CO], 2004.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see pages 69, 474-475, etc.
D. Foata and D. Zeilberger, A Classic Proof of a Recurrence for a Very Classical Sequence, arXiv:math/9805015 [math.CO], 1998.
Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
N. Gabriel, K. Peske, L. Pudwell and S. Tay, Pattern Avoidance in Ternary Trees, J. Int. Seq. 15 (2012) # 12.1.5.
W. Gatterbauer and D. Suciu, Approximate Lifted Inference with Probabilistic Databases, arXiv preprint arXiv:1412.1069 [cs.DB], 2014.
Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
Evangelos Georgiadis, Akihiro Munemasa and Hajime Tanaka, A note on super Catalan numbers, arXiv:1101.1579 [math.CO], 2011-2012.
Étienne Ghys, A Singular Mathematical Promenade, arXiv:1612.06373, 2016, also, The Mathematical Intelligencer (2018) 40.2, 85-88.
Samuele Giraudo, Pluriassociative algebras II: The polydendriform operad and related operads, arXiv:1603.01394 [math.CO], 2016.
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
Li Guo and Jun Pei, Averaging algebras, Schroeder numbers and rooted trees, arXiv preprint arXiv:1401.7386 [math.RA], 2014.
Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
St. John Kettle, Letter to N. J. A. Sloane, 1982.
Anton Khoroshkin and Thomas Willwacher, Real moduli space of stable rational curves revisted, arXiv:1905.04499 [math.AT], 2019.
E. Krasko and A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17.
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973).
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
G. Kreweras, Letter to N. J. A. Sloane, 1978.
V. V. Kruchinin and D. V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, arXiv preprint arXiv:1206.0877 [math.CO], 2012, and J. Int. Seq. 15 (2012) #12.9.3
Huyile Liang, Jeffrey Remmel and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 11.
A. Marco and J.-J. Martinez, A total positivity property of the Marchenko-Pastur Law, Electronic Journal of Linear Algebra, Volume 30 (2015), pp. 106-117.
Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
D. Merlini, R. Sprugnoli and M. C. Verri, Waiting patterns for a printer, FUN with algorithm'01, Isola d'Elba, 2001.
W. Mlotkowski and K. A. Penson, The probability measure corresponding to 2-plane trees, ArXiv preprint arXiv:1304.6544 [math.PR], 2013.
T. Motzkin, The hypersurface cross ratio, Bull. Amer. Math. Soc., 51 (1945), 976-984.
Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.
Jean-Christophe Novelli and Jean-Yves Thibon, Duplicial algebras and Lagrange inversion, arXiv preprint arXiv:1209.5959 [math.CO], 2012.
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
P. Peart and W.-J. Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
O. Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, arXiv:1209.1355 [math.CO], 2012-2014.
O. Pechenik, Cyclic sieving of increasing tableaux and small Schröder paths, J. Combin. Theory A, 125 (2014), 357-378.
R. A. Perez, A brief but historic article of Siegel, Notices AMS, 58 (2011), 558-566.
E. Pergola and R. A. Sulanke, Schroeder Triangles, Paths and Parallelogram Polyominoes, J. Integer Sequences, 1 (1998), #98.1.7.
Vincent Pilaud, Pebble trees, arXiv:2205.06686 [math.CO], 2022.
Vincent Pilaud and V. Pons, Permutrees, arXiv preprint arXiv:1606.09643 [math.CO], 2016.
Feng Qi, Xiao-Ting Shi, and Bai-Ni Guo, Integral representations of the large and little Schroder numbers, Preprint, 2016.
Feng Qi and Bai-Ni Guo, Some explicit and recursive formulas of the large and little Schröder numbers, Arab Journal of Mathematical Sciences, June 2016.
E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376. [Annotated scanned copy]
L. W. Shapiro & N. J. A. Sloane, Correspondence, 1976
M. Shattuck, On the zeros of some polynomials with combinatorial coefficients, Annales Mathematicae et Informaticae, 42 (2013) pp. 93-101.
N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, arXiv:math/0312448 [math.CO], 2003.
N. J. A. Sloane, Transforms
L. M. Smiley, Variants of Schroeder Dissections, arXiv:math/9907057 [math.CO], 1999.
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
R. P. Stanley, Hipparchus, Plutarch, Schröder and Hough, Am. Math. Monthly, Vol. 104, No. 4, p. 344, 1997.
R. P. Stanley, Hipparchus, Plutarch, Schröder and Hough, Amer. Math. Monthly, 104, 1997, 344-350.
Y. Sun and Z. Wang, Consecutive pattern avoidances in non-crossing trees, Graph. Combinat. 26 (2010) 815-832
Anthony Van Duzer, Subtrees of a Given size in Schroeder Trees, arXiv:1904.05525 [math.CO], 2019.
Eric Weisstein's World of Mathematics, Bracketing
Eric Weisstein's World of Mathematics, Super Catalan Number
Wen-jin Woan, A Recursive Relation for Weighted Motzkin Sequences Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.6.
Wen-jin Woan, A Relation Between Restricted and Unrestricted Weighted Motzkin Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.7.
E. X. W. Xia and O. X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, 20 (2013), #P3.
FORMULA
D-finite with recurrence: (n+1) * a(n) = (6*n-3) * a(n-1) - (n-2) * a(n-2) if n>1. a(0) = a(1) = 1.
a(n) = 3*a(n-1) + 2*A065096(n-2) (n>2). If g(x) = 1 + 3*x + 11*x^2 + 45*x^3 + ... + a(n)*x^n + ..., then g(x) = 1 + 3(x*g(x)) + 2(x*g(x))^2, g(x)^2 = 1 + 6*x + 31*x^2 + 156*x^3 + ... + A065096(n)*x^n + ... - Paul D. Hanna, Jun 10 2002
a(n+1) = -a(n) + 2*Sum_{k=1..n} a(k)*a(n+1-k). - Philippe Deléham, Jan 27 2004
a(n-2) = (1/(n-1))*Sum_{k=0..n-3} binomial(n-1,k+1)*binomial(n-3,k)*2^(n-3-k) for n >= 3 [G. Polya, Elemente de Math., 12 (1957), p. 115.] - N. J. A. Sloane, Jun 13 2015
G.f.: (1 + x - sqrt(1 - 6*x + x^2) )/(4*x) = 2/(1 + x + sqrt(1 - 6*x + x^2)).
a(n) ~ W*(3+sqrt(8))^n*n^(-3/2) where W = (1/4)*sqrt((sqrt(18)-4)/Pi) [See Knuth I, p. 534, or Perez. Note that the formula on line 3, page 475 of Flajolet and Sedgewick seems to be wrong - it has to be multiplied by 2^(1/4).] - N. J. A. Sloane, Apr 10 2011
The correct asymptotic for this sequence is a(n) ~ W*(3+sqrt(8))^n*n^(-3/2), where W = (1+sqrt(2))/(2*2^(3/4)*sqrt(Pi)) = 0.404947065905750651736243... Result in book by D. Knuth (p. 539 of 3rd edition, exercise 12) is for sequence b(n), but a(n) = b(n+1)/2. Therefore is asymptotic a(n) ~ b(n) * (3+sqrt(8))/2. - Vaclav Kotesovec, Sep 09 2012
The Hankel transform of this sequence gives A006125 = 1, 1, 2, 8, 64, 1024, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n+1) = Sum_{k=0..floor((n-1)/2)} 2^k * 3^(n-1-2k) * binomial(n-1, 2k) * Catalan(k). This formula counts colored Dyck paths by the same parameter by which Touchard's identity counts ordinary Dyck paths: number of DDUs (U=up step, D=down step). See also Gouyou-Beauchamps reference. - David Callan, Mar 14 2004
From Paul Barry, May 24 2005: (Start)
a(n) = (1/(n+1))*Sum_{k=0..n} C(n+1, k)*C(2n-k, n)*(-1)^k*2^(n-k) [with offset 0].
a(n) = (1/(n+1))*Sum_{k=0..n} C(n+1, k+1)*C(n+k, k)*(-1)^(n-k)*2^k [with offset 0].
a(n) = Sum_{k=0..n} (1/(k+1))*C(n, k)*C(n+k, k)*(-1)^(n-k)*2^k [with offset 0].
a(n) = Sum_{k=0..n} A088617(n, k)*(-1)^(n-k)*2^k [with offset 0]. (End)
E.g.f. of a(n+1) is exp(3*x)*BesselI(1, 2*sqrt(2)*x)/(sqrt(2)*x). - Vladeta Jovovic, Mar 31 2004
Reversion of (x-2*x^2)/(1-x) is g.f. offset 1.
For n>=1, a(n) = Sum_{k=0..n} 2^k*N(n, k) where N(n, k) = (1/n)*C(n, k)*C(n, k+1) are the Narayana numbers (A001263). - Benoit Cloitre, May 10 2003 [This formula counts colored Dyck paths by number of peaks, which is easy to see because the Narayana numbers count Dyck paths by number of peaks and the number of peaks determines the number of interior ascent vertices.]
a(n) = Sum_{k=0..n} A088617(n, k)*2^k*(-1)^(n-k). - Philippe Deléham, Jan 21 2004
For n > 0, a(n) = (1/(n+1)) * Sum_{k = 0 .. n-1} binomial(2*n-k, n) * binomial(n-1, k). This formula counts colored Dyck paths (as above) by number of white vertices. - David Callan, Mar 14 2004
a(n-1) = (d^(n-1)/dx^(n-1))((1-x)/(1-2*x))^n/n!|_{x=0}. (For a proof see the comment on the unsigned row sums of triangle A111785.)
From Wolfdieter Lang, Sep 12 2005: (Start)
a(n) = (1/n)*Sum_{k=1..n} binomial(n, k)*binomial(n+k, k-1).
a(n) = hypergeom([1-n, n+2], [2], -1), n>=1. (End)
a(n) = hypergeom([1-n, -n], [2], 2) for n>=0. - Peter Luschny, Sep 22 2014
a(m+n+1) = Sum_{k>=0} A110440(m, k)*A110440(n, k)*2^k = A110440(m+n, 0). - Philippe Deléham, Sep 14 2005
Sum over partitions formula (reference Schroeder paper p. 362, eq. (1) II). Number the partitions of n according to Abramowitz-Stegun pp. 831-832 (see reference under A105805) with k=1..p(n)= A000041(n). For n>=1: a(n-1) = Sum_{k=2..p(n)} A048996(n,k)*a(1)^e(k, 1)*a(1)^e(k, 2)*...*a(n-2)^e(k, n-1) if the k-th partition of n in the mentioned order is written as (1^e(k, 1), 2^e(k, 2), ..., (n-1)e(k, n-1)). Note that the first (k=1) partition (n^1) has to be omitted. - Wolfdieter Lang, Aug 23 2005
Starting (1, 3, 11, 45, ...), = row sums of triangle A126216 = A001263 * [1, 2, 4, 8, 16, ...]. - Gary W. Adamson, Nov 30 2007
From Paul Barry, May 15 2009: (Start)
G.f.: 1/(1+x-2x/(1+x-2x/(1+x-2x/(1+x-2x/(1-.... (continued fraction).
G.f.: 1/(1-x/(1-x-x/(1-x-x/(1-x-x/(1-... (continued fraction).
G.f.: 1/(1-x-2x^2/(1-3x-2x^2/(1-3x-2x^2/(1-... (continued fraction). (End)
G.f.: 1 / (1 - x / (1 - 2*x / (1 - x / (1 - 2*x / ... )))). - Michael Somos, May 19 2013
a(n) = (LegendreP(n+1,3)-3*LegendreP(n,3))/(4*n) for n>0. - Mark van Hoeij, Jul 12 2010 [This formula is mentioned in S.-J. Kettle's 1982 letter - see link. N. J. A. Sloane, Jun 13 2015]
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, where M is the production matrix:
1, 1, 0, 0, 0, 0, ...
2, 2, 2, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
2, 2, 2, 2, 2, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
From Gary W. Adamson, Aug 23 2011: (Start)
a(n) is the sum of top row terms of Q^(n-1), where Q is the infinite square production matrix:
1, 2, 0, 0, 0, ...
1, 1, 2, 0, 0, ...
1, 1, 1, 2, 0, ...
1, 1, 1, 1, 2, ...
... (End)
Let h(t) = (1-t)^2/(2*(1-t)^2-1) = 1/(1-(2*t+3*t^2+4*t^3+...)), an o.g.f. for A003480, then for A001003 a(n) = (1/n!)*((h(t)*d/dt)^n) t, evaluated at t=0, with initial n=1. (Cf. A086810.) - Tom Copeland, Sep 06 2011
A006318(n) = 2*a(n) if n>0. - Michael Somos, Mar 31 2007
BINOMIAL transform is A118376 with offset 0. REVERT transform is A153881. INVERT transform is A006318. INVERT transform of A114710. HANKEL transform is A139685. PSUM transform is A104858. - Michael Somos, May 19 2013
G.f.: 1 + x/(Q(0) - x) where Q(k) = 1 + k*(1-x) - x - x*(k+1)*(k+2)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = A144944(n,n) = A186826(n,0). - Reinhard Zumkeller, May 11 2013
a(n)=(-1)^n*LegendreP(n,-1,-3)/sqrt(2), n > 0, LegendreP(n,a,b) is the Legendre function. - Karol A. Penson, Jul 06 2013
Integral representation as n-th moment of a positive weight function W(x) = W_a(x) + W_c(x), where W_a(x) = Dirac(x)/2, is the discrete (atomic) part, and W_c(x) = sqrt(8-(x-3)^2)/(4*Pi*x) is the continuous part of W(x) defined on (3 sqrt(8),3+sqrt(8)): a(n) = int( x^n*W_a(x), x=-eps..eps ) + int( x^n*W_c(x), x = 3-sqrt(8)..3+sqrt(8) ), for any eps>0, n>=0. W_c(x) is unimodal, of bounded variation and W_c(3-sqrt(8)) = W_c(3+sqrt(8)) = 0. Note that the position of the Dirac peak (x=0) lies outside support of W_c(x). - Karol A. Penson and Wojciech Mlotkowski, Aug 05 2013
G.f.: 1 + x/G(x) with G(x) = 1 - 3*x - 2*x^2/G(x) (continued fraction). - Nikolaos Pantelidis, Dec 17 2022
EXAMPLE
G.f. = 1 + x + 3*x^2 + 11*x^3 + 45*x^4 + 197*x^5 + 903*x^6 + 4279*x^7 + ...
a(2) = 3: abc, a(bc), (ab)c; a(3) = 11: abcd, (ab)cd, a(bc)d, ab(cd), (ab)(cd), a(bcd), a(b(cd)), a((bc)d), (abc)d, (a(bc))d, ((ab)c)d.
Sum over partitions formula: a(3) = 2*a(0)*a(2) + 1*a(1)^2 + 3*(a(0)^2)*a(1) + 1*a(0)^4 = 6 + 1 + 3 + 1 = 11.
a(4) = 45 since the top row of Q^3 = (11, 14, 12, 8, 0, 0, 0, ...); (11 + 14 + 12 + 8) = 45.
MAPLE
t1 := (1/(4*x))*(1+x-sqrt(1-6*x+x^2)); series(t1, x, 40);
invtr:= proc(p) local b; b:= proc(n) option remember; local i; `if`(n<1, 1, add(b(n-i) *p(i-1), i=1..n+1)) end end: a:='a': f:= (invtr@@2)(a): a:= proc(n) if n<0 then 1 else f(n-1) fi end: seq(a(n), n=0..30); # Alois P. Heinz, Apr 01 2009
# Computes n -> [a[0], a[1], .., a[n]]
A001003_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := a[w-1]+2*add(a[j]*a[w-j-1], j=1..w-1) od;
convert(a, list) end: A001003_list(100); # Peter Luschny, May 17 2011
MATHEMATICA
Table[Length[Flatten[Nest[ #/.a_Integer:> Join[Range[0, a + 1], Range[a, 0, -1]] &, {0}, n]]], {n, 0, 10}]; Sch[ 0 ] = Sch[ 1 ] = 1; Sch[ n_Integer ] := Sch[ n ] = (3(2n - 1)Sch[ n - 1 ] - (n - 2)Sch[ n - 2 ])/(n + 1); Array[ Sch, 24, 0]
(* Second program: *)
a[n_] := Hypergeometric2F1[-n + 1, n + 2, 2, -1]; a[0] = 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 09 2011, after Vladeta Jovovic *)
a[ n_] := SeriesCoefficient[ (1 + x - Sqrt[1 - 6 x + x^2]) / (4 x), {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
Table[(KroneckerDelta[n] - GegenbauerC[n+1, -1/2, 3])/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
a[n_] := -LegendreP[n, -1, 2, 3] I / Sqrt[2]; a[0] = 1;
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Feb 16 2019 *)
a[1]:=1; a[2]:=1; a[n_]:=a[n] = a[n-1]+2 Sum[a[k] a[n-k], {k, 2, n-1}]; Map[a, Range[24]] (* Oliver Seipel, Nov 03 2024, after Schröder 1870 *)
PROG
(PARI) {a(n) = if( n<1, n==0, sum( k=0, n, 2^k * binomial(n, k) * binomial(n, k-1) ) / (2*n))}; /* Michael Somos, Mar 31 2007 */
(PARI) {a(n) = my(A); if( n<1, n==0, n--; A = x * O(x^n); n! * simplify( polcoef( exp(3*x + A) * besseli(1, 2*x * quadgen(8) + A), n)))}; /* Michael Somos, Mar 31 2007 */
(PARI) {a(n) = if( n<0, 0, n++; polcoef( serreverse( (x - 2*x^2) / (1 - x) + x * O(x^n)), n))}; /* Michael Somos, Mar 31 2007 */
(PARI) N=30; x='x+O('x^N); Vec( (1+x-(1-6*x+x^2)^(1/2))/(4*x) ) \\ Hugo Pfoertner, Nov 19 2018
(Python) # The objective of this implementation is efficiency.
# n -> [a(0), a(1), ..., a(n)]
def A001003_list(n):
a = [0 for i in range(n)]
a[0] = 1
for w in range(1, n):
s = 0
for j in range(1, w):
s += a[j]*a[w-j-1]
a[w] = a[w-1]+2*s
return a
# Peter Luschny, May 17 2011
(Sage) # Generalized algorithm of L. Seidel
def A001003_list(n) :
D = [0]*(n+1); D[1] = 1/2
b = True; h = 2; R = [1]
for i in range(2*n-2) :
if b :
for k in range(h, 0, -1) : D[k] += D[k-1]
h += 1;
else :
for k in range(1, h, 1) : D[k] += D[k-1]
R.append(D[h-1]);
b = not b
return R
A001003_list(24) # Peter Luschny, Jun 02 2012
(Haskell)
a001003 = last . a144944_row -- Reinhard Zumkeller, May 11 2013
(Python)
from gmpy2 import divexact
A001003 = [1, 1]
for n in range(3, 10**3):
A001003.append(divexact(A001003[-1]*(6*n-9)-(n-3)*A001003[-2], n))
# Chai Wah Wu, Sep 01 2014
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 50);
Coefficients(R!( (1+x -Sqrt(1-6*x+x^2) )/(4*x) )); // G. C. Greubel, Oct 27 2024
CROSSREFS
See A000081, A000108, A001190, A001699, for other ways to count parentheses.
Row sums of A033282, A033877, A086810, A126216.
Right-hand column 1 of convolution triangle A011117.
Column 1 of A336573. Column 0 of A104219.
The sequences listed in Yang-Jiang's Table 1 appear to be A006318, this sequence, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021
Cf. A006318 (Schroeder numbers).
KEYWORD
nonn,easy,nice,core,changed
STATUS
approved
Triangular array formed by the little Schröder numbers s(n,k).
+10
6
1, 3, 1, 11, 6, 1, 45, 31, 9, 1, 197, 156, 60, 12, 1, 903, 785, 360, 98, 15, 1, 4279, 3978, 2061, 684, 145, 18, 1, 20793, 20335, 11529, 4403, 1155, 201, 21, 1, 103049, 104856, 63728, 27048, 8270, 1800, 266, 24, 1, 518859, 545073, 350136, 161412, 55458, 14202
OFFSET
0,2
COMMENTS
s(n,k) is the number of unit step restricted paths (i.e., they never go below the x-axis) from the origin (0,0) to (n-1,k-1) using up step U(1,1), three types of level steps L(1,0), L'(1,0), L"(1,0) and two types of down steps D(1,-1), D'(1,-1). s(0,0)=1 and the leftmost column s(n,0) is A001003.
The sequence factors A038255 into a product of Riordan arrays.
LINKS
F. Cai, Q.-H. Hou, Y. Sun, and A. L. B. Yang, Combinatorial identities related to 2x2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO], 2018, Table 1.3.
Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 7.
Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017): 3081-3091.
FORMULA
s(n+1,0) = 3s(n,0) + 2s(n,1) and for k > 0: s(n+1,k) = s(n,k-1) + 3s(n,k) + 2s(n,k+1). [Typo fixed by Reinhard Zumkeller, Nov 21 2013]
Riordan array ((1 - 3z - sqrt(1-6z+z^2))/4z*z, (1 - 3z - sqrt(1-6z+z^2))/4z).
Sum_{k>=0} T(m, k)*T(n, k)*2^k = T(m+n, 0) = A001003(m+n+1). - Philippe Deléham, Sep 14 2005
G.f.: 2/( 1 - x*L -2*x*y*U + sqrt( (1 - x*L)^2 - 4*x^2*D*U ) ) where L=3, U = 1, D = 2. - Michael Somos, Mar 31 2007
Sum_{k=0..n} T(n,k)*(2^(k + 1) - 1) = 6^n. - Philippe Deléham, Nov 29 2009
T(n,k) = Sum_{i=0..k + 1} i*(-1)^(k-i+1)*C(k+1,i)*Sum_{j=0..n+1} (-1)^j*2^(n+1-j)*(2*n+i-j+1)!/((n+i-j+1)!*j!*(n-j+1)!))). - Vladimir Kruchinin, Oct 17 2011
T(n,k) = (k+1)/(n+1)*Sum_{j=ceiling((n+k+2)/2)..n + 1} C(j,2*j-n-k-2)*3^(2*j-n-k- 2)*2^(n+1-j)*C(n+1,j)). - Vladimir Kruchinin, Jan 28 2013
T(n,k) = ((k+1)/(n+1))*Sum_{m=0..n} 2^(n-m)*C(n+1,m+1)*C(n+1,m-k). - Vladimir Kruchinin, Jan 09 2022
EXAMPLE
Triangle starts:
[0] 1;
[1] 3, 1;
[2] 11, 6, 1;
[3] 45, 31, 9, 1;
[4] 197, 156, 60, 12, 1;
[5] 903, 785, 360, 98, 15, 1;
[6] 4279, 3978, 2061, 684, 145, 18, 1;
[7] 20793, 20335, 11529, 4403, 1155, 201, 21, 1;
[8] 103049, 104856, 63728, 27048, 8270, 1800, 266, 24, 1;
[9] 518859, 545073, 350136, 161412, 55458, 14202, 2646, 340, 27, 1;
MAPLE
T := (n, k) -> ((k + 1)/(n + 1))*add(2^(n - m)*binomial(n+1, m+1)*binomial(n+1, m-k), m = 0..n): seq(seq(T(n, k), k = 0..n), n = 0..9); # Peter Luschny, Jan 09 2022
MATHEMATICA
nmax = 9; t[n_, k_] := Sum[(i*(-1)^(k-i+1)*Binomial[k+1, i]*Sum[(-1)^j*2^(n+1-j)*(2n+i-j+1)! / ((n+i-j+1)!*j!*(n-j+1)!), {j, 0, n+1}]), {i, 0, k+1}]; Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Nov 14 2011, after Vladimir Kruchinin *)
PROG
(PARI) {T(n, k)= if(n<0|| k>n, 0, polcoeff(polcoeff( 2/(1 -3*x -2*x*y +sqrt( 1 -6*x +x^2 +x*O(x^n)) ), n), k))} \\ Michael Somos, Mar 31 2007
(Maxima)
T(n, k):=sum((i*(-1)^(k-i+1)*binomial(k+1, i)*sum((-1)^j*2^(n+1-j)*(2*n+i-j+1)!/((n+i-j+1)!*j!*(n-j+1)!), j, 0, n+1)), i, 0, k+1); /* Vladimir Kruchinin, Oct 17 2011 */
(Sage)
def A110440_triangle(dim):
T = matrix(ZZ, dim, dim)
for n in range(dim): T[n, n] = 1
for n in (1..dim-1):
for k in (0..n-1):
T[n, k] = T[n-1, k-1]+3*T[n-1, k]+2*T[n-1, k+1]
return T
A110440_triangle(9) # Peter Luschny, Sep 20 2012
(Maxima) T(n, k):=((k+1)/(n+1)*sum(binomial(j, -n-k+2*j-2)*3^(-n-k+2*j-2)*2^(n+1-j)*binomial(n+1, j), j, ceiling((n+k+2)/2), n+1)); \\ Vladimir Kruchinin, Jan 28 2013
(Haskell)
a110440 n k = a110440_tabl !! n !! k
a110440_row n = a110440_tabl !! n
a110440_tabl = iterate (\xs ->
zipWith (+) ([0] ++ xs) $
zipWith (+) (map (* 3) (xs ++ [0]))
(map (* 2) (tail xs ++ [0, 0]))) [1]
-- Reinhard Zumkeller, Nov 21 2013
CROSSREFS
Cf. A232246 (central terms), A001003 (left column), A065096 (2nd column?), A225887 (row sums?).
KEYWORD
easy,nice,nonn,tabl
AUTHOR
Asamoah Nkwanta (nkwanta(AT)jewel.morgan.edu), Aug 08 2005
STATUS
approved
Expansion of (1 - 4*x - (1-2*x)*sqrt(1-4*x-4*x^2))/(8*x^3).
+10
2
0, 1, 4, 16, 64, 260, 1072, 4480, 18944, 80928, 348800, 1515008, 6625280, 29147456, 128918272, 572928000, 2557100032, 11457170944, 51514963968, 232370167808, 1051235287040, 4768568354816, 21684663148544, 98835356778496, 451433970008064
OFFSET
0,3
LINKS
D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math., 49 (1997), 301-320.
FORMULA
Binomial transform is A065096. - Paul Barry, Sep 16 2006
a(n) = (1/Pi)*Integral_{x=2-2*sqrt(2)..2+2*sqrt(2)} x^n*sqrt(-x^2+4x+4)*(x-2)/8. - Paul Barry, Sep 16 2006
a(n) = Sum_{k=0..n} 2^(n-k)*binomial(n,k)*2^((k-1)/2)*C((k-1)/2+1)*(1-(-1)^k)/2, where C(n)=A000108(n). - Paul Barry, Sep 16 2006
D-finite with recurrence: a(n) = (1/(n+3))*((6*n+8)*a(n-1) - (4*n-4)*a(n-2) - (8*n-16)*a(n-3)) for n > 2, with a(0)=0, a(1)=1, a(2)=4. - Tani Akinari, Jul 04 2013
a(n) ~ 2^(n + 1/4) * (1 + sqrt(2))^(n + 3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019
MATHEMATICA
CoefficientList[Series[(1-4x-(1-2x)Sqrt[1-4x-4x^2])/(8x^3), {x, 0, 30}], x] (* Harvey P. Dale, Aug 09 2016 *)
Table[Sum[2^(n-k) * Binomial[n, k] * 2^((k-1)/2) * CatalanNumber[(k+1)/2] * (1 - (-1)^k)/2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 03 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 12 2002
STATUS
approved
Cayley's triangle of V numbers; triangle V(n,k), n >= 4, n <= k <= 2*n-4, read by rows.
+10
1
1, 2, 4, 3, 14, 14, 4, 32, 72, 48, 5, 60, 225, 330, 165, 6, 100, 550, 1320, 1430, 572, 7, 154, 1155, 4004, 7007, 6006, 2002, 8, 224, 2184, 10192, 25480, 34944, 24752, 7072, 9, 312, 3822, 22932, 76440, 148512, 167076, 100776, 25194, 10, 420, 6300, 47040, 199920, 514080, 813960, 775200, 406980, 90440, 11, 550, 9900, 89760, 471240, 1534896, 3197700, 4263600, 3517470, 1634380, 326876
OFFSET
4,2
LINKS
A. Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.
FORMULA
G.f.: (1-x*y*(1+2*y)-sqrt(1-2*x*y*(1+2*y)+x^2*y^2))^2/(4*y^4*(1+y)^2). - Vladimir Kruchinin, Jan 27 2022
T(n,m) = 2*C(m,n)*C(n-2,m-n+2)/(n-2), n>=4. - Vladimir Kruchinin, Jan 27 2022
EXAMPLE
Triangle begins:
1;
2, 4;
3, 14, 14;
4, 32, 72, 48;
5, 60, 225, 330, 165;
6, 100, 550, 1320, 1430, 572;
...
MAPLE
V := proc(n, x)
local X, g, i ;
X := x^2/(1-x) ;
g := X^n ;
for i from 1 to n-2 do
g := diff(g, x) ;
end do;
x^2*g*2*(n-1)/n! ;
end proc;
A259476 := proc(n, k)
V(k-n+2, x) ;
coeftayl(%, x=0, n+2) ;
end proc:
for n from 4 to 14 do
for k from n to 2*n-4 do
printf("%d, ", A259476(n, k)) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, Jul 09 2015
MATHEMATICA
T[n_, m_] := 2 Binomial[m, n] Binomial[n-2, m-n+2]/(n-2);
Table[T[n, m], {n, 4, 14}, {m, n, 2n-4}] // Flatten (* Jean-François Alcover, Apr 15 2023, after Vladimir Kruchinin *)
PROG
(Maxima)
T(n, m):=if n<4 then 0 else (2*binomial(m, n)*binomial(n-2, m-n+2))/(n-2); /* Vladimir Kruchinin, Jan 27 2022 */
CROSSREFS
Diagonals give A002057, A002058, A002059, A002060.
Row sums give A065096 (with a different offset).
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jul 03 2015
STATUS
approved
Triangle T read by rows: T(n,0) = T(n,n) = 1 for n>=0, for n>=2 and 1<=k<=n-1, T(n,k) = T(n-1,k-1) + T(n-1,k) if k = [n/2] or k = [(n+1)/2], else T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k).
+10
0
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 5, 1, 1, 7, 11, 11, 7, 1, 1, 9, 23, 22, 23, 9, 1, 1, 11, 39, 45, 45, 39, 11, 1, 1, 13, 59, 107, 90, 107, 59, 13, 1, 1, 15, 83, 205, 197, 197, 205, 83, 15, 1
OFFSET
0,5
FORMULA
Sum_{k, 0<=k<=n} T(n,k) = A110110(n), number of symmetric Schroeder paths of length 2n.
Sum_{k, 0<=k<=n-2} T(n+k,k) = A065096(n-1), n>=2.
T(2n,n) = A006318(n), large Schroeder numbers.
T(2n+1,n) = A001003(n+1), little Schroeder numbers.
T(n,0) = A000012(n).
T(n,1) = A004280(n).
T(n+2,2) = A142463(n) = A132209(n), n>0.
EXAMPLE
Triangle begins
1
1, 1
1, 2, 1
1, 3, 3, 1
1, 5, 6, 5, 1
1, 7, 11, 11, 7, 1
1, 9, 23, 22, 23, 9, 1
1, 11, 39, 45, 45, 39, 11, 1
1, 13, 59, 107, 90, 107, 59, 13, 1
1, 15, 83, 205, 197, 197, 205, 83, 15, 1
1, 17, 111, 347, 509, 394, 509, 347, 111, 17, 1
1, 19, 143, 541, 1061, 903, 903, 1061, 541, 143, 19, 1
1, 21, 179, 795, 1949, 2473, 1806, 2473, 1949, 795, 179, 21, 1
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 10 2013
STATUS
approved
a(n) = Sum_{k = 0..n} E1(n, k)*k^2, where E1 are the Eulerian numbers A173018.
+10
0
0, 0, 1, 8, 64, 540, 4920, 48720, 524160, 6108480, 76809600, 1037836800, 15008716800, 231437606400, 3792255667200, 65819609856000, 1206547550208000, 23297526540288000, 472708591939584000, 10055994967130112000, 223826984752250880000, 5202760944485744640000, 126075414965721661440000, 3179798058882852126720000, 83346901966165164687360000, 2267221868000212451328000000
OFFSET
0,4
COMMENTS
The Eulerian transform of the squares.
FORMULA
a(n) = n! * [x^n] x^2*(-x^2 + x - 3)/(6*(x - 1)^3).
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^j*binomial(n + 1, j)*k^2*(k + 1 - j)^n.
a(n) = ((n - 3)*(n - 1)*(23*n - 44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) for n >= 3.
MAPLE
a := n -> add(combinat[eulerian1](n, k)*k^2, k = 0..n):
# Recurrence:
a := proc(n) option remember; if n < 2 then 0 elif n = 2 then 1 else
((n-3)*(n-1)*(23*n-44)*a(n-2) + ((159 - 7*n)*n - 286)*a(n-1))/(16*(n - 2)) fi end:
seq(a(n), n = 0..29);
MATHEMATICA
a[n_] := Sum[Sum[(-1)^j Binomial[n + 1, j] k^2 (k + 1 - j)^n, {j, 0, k}], {k, 0, n}]; a[0] := 0; Table[a[n], {n, 0, 25}]
PROG
(SageMath)
def aList(len):
R.<x> = PowerSeriesRing(QQ, default_prec=len+2)
f = x^2*(-x^2 + x - 3)/(6*(x - 1)^3)
return f.egf_to_ogf().list()[:len]
print(aList(20))
CROSSREFS
Transforms of the squares: A151881 (StirlingCycle), A033452 (StirlingSet), A105219 (Laguerre), A103194 (Lah), A065096 (SchröderBig), A083411 (Fubini), A141222 (Narayana), A000330 (Units A000012).
Cf. A173018.
KEYWORD
nonn
AUTHOR
Peter Luschny, May 11 2021
STATUS
approved

Search completed in 0.031 seconds