[go: up one dir, main page]

login
Search: a064332 -id:a064332
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, 1, 1, 1, 1, 1, 1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938.
+10
59
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
OFFSET
0,8
COMMENTS
Catalan convolution triangle; g.f. for column k: (x*c(x))^k with c(x) g.f. for A000108 (Catalan numbers).
Riordan array (1, xc(x)), where c(x) the g.f. of A000108; inverse of Riordan array (1, x*(1-x)) (see A109466).
Diagonal sums give A132364. - Philippe Deléham, Nov 11 2007
LINKS
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
E. Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
A. Robertson, D. Saracino and D. Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002.
L. W. Shapiro, S. Getu, W.-J. Woan and L. C. Woodson, The Riordan group, Discrete Applied Math., 34 (1991), 229-239.
FORMULA
T(n, k) = binomial(2n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0.
T(0, 0) = 1; T(n, 0) = 0 if n > 0; T(0, k) = 0 if k > 0; for k > 0 and n > 0: T(n, k) = Sum_{j>=0} T(n-1, k-1+j).
Sum_{j>=0} T(n+j, 2j) = binomial(2n-1, n), n > 0.
Sum_{j>=0} T(n+j, 2j+1) = binomial(2n-2, n-1), n > 0.
Sum_{k>=0} (-1)^(n+k)*T(n, k) = A064310(n). T(n, k) = (-1)^(n+k)*A099039(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for x = 0,1,2,3,4,5,6,7,8 respectively.
Sum_{k>=0} T(n, k)*x^(n-k) = C(x, n); C(x, n) are the generalized Catalan numbers.
Sum_{j=0..n-k} T(n+k,2*k+j) = A039599(n,k).
Sum_{j>=0} T(n,j)*binomial(j,k) = A039599(n,k).
Sum_{k=0..n} T(n,k)*A000108(k) = A127632(n).
Sum_{k=0..n} T(n,k)*(x+1)^k*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x= 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Aug 25 2007
Sum_{k=0..n} T(n,k)*A000108(k-1) = A121988(n), with A000108(-1)=0. - Philippe Deléham, Aug 27 2007
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Oct 27 2007
T(n,k)*2^(n-k) = A110510(n,k); T(n,k)*3^(n-k) = A110518(n,k). - Philippe Deléham, Nov 11 2007
Sum_{k=0..n} T(n,k)*A000045(k) = A109262(n), A000045: Fibonacci numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A000129(k) = A143464(n), A000129: Pell numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A100335(k) = A002450(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A100334(k) = A001906(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A099322(k) = A015565(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A106233(k) = A003462(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A151821(k+1) = A100320(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A082505(k+1) = A144706(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A000045(2k+2) = A026671(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A122367(k) = A026726(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A008619(k) = A000958(n+1). - Philippe Deléham, Nov 15 2009
Sum_{k=0..n} T(n,k)*A027941(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - x*z*c(z)) where c(z) the g.f. of A000108. - Michael Somos, Oct 01 2022
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 5, 5, 3, 1;
0, 14, 14, 9, 4, 1;
0, 42, 42, 28, 14, 5, 1;
0, 132, 132, 90, 48, 20, 6, 1;
From Paul Barry, Sep 28 2009: (Start)
Production array is
0, 1,
0, 1, 1,
0, 1, 1, 1,
0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End)
MAPLE
A106566 := proc(n, k)
if n = 0 then
1;
elif k < 0 or k > n then
0;
else
binomial(2*n-k-1, n-k)*k/n ;
end if;
end proc: # R. J. Mathar, Mar 01 2015
MATHEMATICA
T[n_, k_] := Binomial[2n-k-1, n-k]*k/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1&, #(1-Sqrt[1-4#])/(2#)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
PROG
(Magma)
A106566:= func< n, k | n eq 0 select 1 else (k/n)*Binomial(2*n-k-1, n-k) >;
[A106566(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 06 2021
(Sage)
def A106566(n, k): return 1 if (n==0) else (k/n)*binomial(2*n-k-1, n-k)
flatten([[A106566(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 06 2021
(PARI) {T(n, k) = if( k<=0 || k>n, n==0 && k==0, binomial(2*n - k, n) * k/(2*n - k))}; /* Michael Somos, Oct 01 2022 */
CROSSREFS
The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
See also A009766, A033184, A059365 for other versions.
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, May 30 2005
EXTENSIONS
Formula corrected by Philippe Deléham, Oct 31 2008
Corrected by Philippe Deléham, Sep 17 2009
Corrected by Alois P. Heinz, Aug 02 2012
STATUS
approved
A050165*A130595 as infinite lower triangular matrices.
+10
2
1, 0, 1, 0, -1, 2, 0, 2, -6, 5, 0, -5, 20, -28, 14, 0, 14, -70, 135, -120, 42, 0, -42, 252, -616, 770, -495, 132, 0, 132, -924, 2730, -4368, 4004, -2002, 429, 0, -429, 3432, -11880, 23100, -27300, 19656, -8008, 1430
OFFSET
0,6
COMMENTS
Triangle, read by rows, given by [0,-1,-1,-1,-1,-1,-1,...] DELTA [1,1,1,1,1,1,1,1,...] where DELTA is the operator defined in A084938. Triangle related to k-regular trees.
LINKS
Paul Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.
Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
FORMULA
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A064093, A064092, A064091, A064090, A064089, A064088, A064087, A064063, A064062, A000108, A000012, A064310, A064311, A064325, A064326, A064327, A064328, A064329, A064330, A064331, A064332, A064333 for x = -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12 respectively. [Philippe Deléham, Mar 03 2009]
EXAMPLE
Triangle begins:
1;
0, 1;
0, -1, 2;
0, 2, -6, 5;
0, -5, 20, -28, 14;
...
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Philippe Deléham, Mar 01 2009
STATUS
approved

Search completed in 0.008 seconds