[go: up one dir, main page]

login
A064059
Seventh column of Catalan triangle A009766.
8
132, 429, 1001, 2002, 3640, 6188, 9996, 15504, 23256, 33915, 48279, 67298, 92092, 123970, 164450, 215280, 278460, 356265, 451269, 566370, 704816, 870232, 1066648, 1298528, 1570800, 1888887, 2258739, 2686866, 3180372, 3746990, 4395118, 5133856, 5973044
OFFSET
0,1
LINKS
Richard K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article 00.1.6.
FORMULA
G.f.: (132-495*x+770*x^2-616*x^3+252*x^4-42*x^5)/(1-x)^7; numerator polynomial is N(2;5, x) from A062991.
a(n) = A009766(n+6, 6) = (n+1)*binomial(n+12,5)/6.
a(n) = binomial(n+13,6) - 2*binomial(n+12,5). - Zerinvary Lajos, Jul 19 2006
a(n) = A214292(n+11,5). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 25961/2134440.
Sum_{n>=0} (-1)^n/a(n) = 4160*log(2)/77 - 79917773/2134440. (End)
MAPLE
[seq(binomial(n+1, 6)-2*binomial(n, 5), n=12..55)]; # Zerinvary Lajos, Jul 19 2006
MATHEMATICA
CoefficientList[Series[(42 z^5-252 z^4+616 z^3-770 z^2+495 z-132)/(z-1)^7, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
PROG
(Magma)
A064059:= func< n | (n+1)*Binomial(n+12, 5)/6 >;
[A064059(n): n in [0..40]]; // G. C. Greubel, Sep 27 2024
(SageMath)
def A064059(n): return (n+1)*binomial(n+12, 5)//6
[A064059(n) for n in range(41)] # G. C. Greubel, Sep 27 2024
CROSSREFS
Cf. A000096, A005586, A005587, A005557 (third to sixth column).
Sequence in context: A116154 A305067 A278128 * A244103 A248555 A253502
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 13 2001
STATUS
approved