[go: up one dir, main page]

login
Search: a054592 -id:a054592
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and spanning edge-connectivity k.
+10
24
1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 26, 28, 9, 1, 0, 296, 475, 227, 25, 1, 0, 6064, 14736, 10110, 1782, 75, 1, 0
OFFSET
0,7
COMMENTS
The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph.
We consider a graph with one vertex and no edges to be disconnected.
EXAMPLE
Triangle begins:
1
1 0
1 1 0
4 3 1 0
26 28 9 1 0
296 475 227 25 1 0
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_, eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds], Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], spanEdgeConn[Range[n], #]==k&]], {n, 0, 5}, {k, 0, n}]
CROSSREFS
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(1) = 1.
Column k = 1 is A327071.
Column k = 2 is A327146.
The unlabeled version (except with offset 1) is A263296.
KEYWORD
nonn,tabl,more
AUTHOR
Gus Wiseman, Aug 23 2019
EXTENSIONS
a(21)-a(27) from Robert Price, May 25 2021
STATUS
approved
Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and vertex-connectivity k.
+10
23
1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 26, 28, 9, 1, 0, 296, 490, 212, 25, 1, 0, 6064, 15336, 9600, 1692, 75, 1, 0, 230896, 851368, 789792, 210140, 14724, 231, 1, 0
OFFSET
0,7
COMMENTS
The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton. Except for complete graphs, this is the same as cut-connectivity (A327125).
EXAMPLE
Triangle begins:
1
1 0
1 1 0
4 3 1 0
26 28 9 1 0
296 490 212 25 1 0
MATHEMATICA
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
vertConnSys[vts_, eds_]:=Min@@Length/@Select[Subsets[vts], Function[del, Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds, Alternatives@@del, {2}], {}]]!={Complement[vts, del]}]];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], vertConnSys[Range[n], #]==k&]], {n, 0, 5}, {k, 0, n}]
CROSSREFS
The unlabeled version is A259862.
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(0) = A054592(1) = 1.
Column k = 1 is A327336.
Row sums without the first column are A001187, if we assume A001187(0) = A001187(1) = 0.
Row sums without the first two columns are A013922, if we assume A013922(1) = 0.
Cut-connectivity is A327125.
Spanning edge-connectivity is A327069.
Non-spanning edge-connectivity is A327148.
KEYWORD
nonn,tabl,more
AUTHOR
Gus Wiseman, Sep 01 2019
EXTENSIONS
a(21)-a(35) from Robert Price, May 14 2021
STATUS
approved
Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and cut-connectivity k.
+10
18
1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 26, 28, 9, 0, 1, 296, 490, 212, 25, 0, 1, 6064, 15336, 9600, 1692, 75, 0, 1, 230896
OFFSET
0,7
COMMENTS
We define the cut-connectivity of a graph to be the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph, with the exception that a graph with one vertex and no edges has cut-connectivity 1. Except for complete graphs, this is the same as vertex-connectivity.
EXAMPLE
Triangle begins:
1
0 1
1 0 1
4 3 0 1
26 28 9 0 1
296 490 212 25 0 1
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_, eds_]:=If[Length[vts]==1, 1, Min@@Length/@Select[Subsets[vts], Function[del, csm[DeleteCases[DeleteCases[eds, Alternatives@@del, {2}], {}]]!={Complement[vts, del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], cutConnSys[Range[n], #]==k&]], {n, 0, 4}, {k, 0, n}]
CROSSREFS
After the first column, same as A327126.
The unlabeled version is A327127.
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(0) = 1.
Column k = 1 is A327114, if we assume A327114(1) = 1.
Row sums without the first column are A001187.
Row sums without the first two columns are A013922.
Different from A327069.
KEYWORD
nonn,more,tabl
AUTHOR
Gus Wiseman, Aug 25 2019
EXTENSIONS
a(21)-a(28) from Robert Price, May 20 2021
a(1) and a(2) corrected by Robert Price, May 20 2021
STATUS
approved
Number of labeled simple graphs covering n vertices with cut-connectivity 1.
+10
15
0, 0, 0, 3, 28, 490, 15336, 851368, 85010976, 15615858960, 5388679220480, 3548130389657216, 4507988483733389568, 11145255551131555572992, 53964198507018134569758720, 514158235191699333805861463040
OFFSET
0,4
COMMENTS
The cut-connectivity of a graph is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a disconnected or empty graph.
LINKS
FORMULA
a(n) = A001187(n) - A013922(n), if we assume A001187(1) = 0.
MATHEMATICA
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_, eds_]:=If[Length[vts]==1, 1, Min@@Length/@Select[Subsets[vts], Function[del, csm[DeleteCases[DeleteCases[eds, Alternatives@@del, {2}], {}]]!={Complement[vts, del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&cutConnSys[Range[n], #]==1&]], {n, 0, 3}]
PROG
(PARI) seq(n)={my(g=log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))); Vec(serlaplace(g-intformal(1+log(x/serreverse(x*deriv(g))))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019
CROSSREFS
Column k = 1 of A327126.
The unlabeled version is A052442, if we assume A052442(2) = 0.
Connected non-separable graphs are A013922.
BII-numbers for cut-connectivity 1 are A327098.
Set-systems with cut-connectivity 1 are counted by A327197.
Labeled simple graphs with vertex-connectivity 1 are A327336.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 25 2019
STATUS
approved
Number of non-connected simple labeled graphs covering n vertices.
+10
14
1, 0, 0, 0, 3, 40, 745, 21028, 973889, 80133088, 12523299729, 3847333778244, 2341705361100633, 2821794389863015840, 6728707109106848947081, 31769173063866390661714996, 297278309767391164611330317921
OFFSET
0,5
COMMENTS
We consider the empty graph to be neither connected (one component) nor disconnected (more than one component).
FORMULA
a(n) = A006129(n) - A001187(n), if we assume A001187(0) = 0 and A001187(1) = 0.
Inverse binomial transform of A327199.
EXAMPLE
The a(4) = 3 graphs:
{{1,2},{3,4}}
{{1,3},{2,4}}
{{1,4},{2,3}}
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Length[csm[#]]!=1&]], {n, 0, 5}]
CROSSREFS
Column k = 0 of A327149.
The unlabeled version is A327075.
The non-covering version is A327199.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 24 2019
STATUS
approved
Number of non-connected unlabeled simple graphs covering n vertices.
+10
12
1, 0, 0, 0, 1, 2, 10, 35, 185, 1242, 13929, 292131, 12344252, 1032326141, 166163019475, 50671385831320, 29105332577409883, 31455744378606296280, 64032559078724993894492, 245999991257359808853560276, 1787823917424909126688749033668, 24639597815428343970034635549911427
OFFSET
0,6
COMMENTS
We consider the empty graph to be neither connected (one component) nor disconnected (more than one component).
FORMULA
a(n) = A002494(n) - A001349(n), if we assume A001349(0) = A001349(1) = 0.
EXAMPLE
Non-isomorphic representatives of the a(0) = 1 through a(6) = 10 graphs (empty columns not shown):
{} {12,34} {12,35,45} {12,34,56}
{12,34,35,45} {12,35,46,56}
{12,36,46,56}
{13,23,46,56}
{12,34,35,46,56}
{12,36,45,46,56}
{13,23,45,46,56}
{12,13,23,45,46,56}
{12,35,36,45,46,56}
{12,34,35,36,45,46,56}
PROG
(Python)
from functools import lru_cache
from itertools import combinations
from fractions import Fraction
from math import prod, gcd, factorial
from sympy import mobius, divisors
from sympy.utilities.iterables import partitions
def A327075(n):
if n <= 1: return 1-n
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items()), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
@lru_cache(maxsize=None)
def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1, n))
return b(n)-b(n-1)-sum(mobius(n//d)*c(d) for d in divisors(n, generator=True))//n # Chai Wah Wu, Jul 03 2024
CROSSREFS
Column k = 0 of A327201.
The labeled version is A327070.
Disconnected graphs are A000719.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 26 2019
EXTENSIONS
a(20)-a(21) from Chai Wah Wu, Jul 03 2024
STATUS
approved
Number of labeled simple graphs with vertex-connectivity 1.
+10
12
0, 0, 1, 3, 28, 490, 15336, 851368, 85010976, 15615858960, 5388679220480, 3548130389657216, 4507988483733389568, 11145255551131555572992, 53964198507018134569758720, 514158235191699333805861463040, 9672967865350359173180572164444160
OFFSET
0,4
COMMENTS
Same as A327114 except a(2) = 1.
The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton.
LINKS
EXAMPLE
The a(2) = 1 through a(4) = 28 edge-sets:
{12} {12,13} {12,13,14}
{12,23} {12,13,24}
{13,23} {12,13,34}
{12,14,23}
{12,14,34}
{12,23,24}
{12,23,34}
{12,24,34}
{13,14,23}
{13,14,24}
{13,23,24}
{13,23,34}
{13,24,34}
{14,23,24}
{14,23,34}
{14,24,34}
{12,13,14,23}
{12,13,14,24}
{12,13,14,34}
{12,13,23,24}
{12,13,23,34}
{12,14,23,24}
{12,14,24,34}
{12,23,24,34}
{13,14,23,34}
{13,14,24,34}
{13,23,24,34}
{14,23,24,34}
MATHEMATICA
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
vertConnSys[vts_, eds_]:=Min@@Length/@Select[Subsets[vts], Function[del, Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds, Alternatives@@del, {2}], {}]]!={Complement[vts, del]}]];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], vertConnSys[Range[n], #]==1&]], {n, 0, 4}]
CROSSREFS
Column k = 1 of A327334.
The unlabeled version is A052442.
Connected non-separable graphs are A013922.
Set-systems with vertex-connectivity 1 are A327128.
Labeled simple graphs with cut-connectivity 1 are A327114.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 02 2019
EXTENSIONS
Terms a(6) and beyond from Andrew Howroyd, Sep 11 2019
STATUS
approved
Triangle read by rows where T(n,k) is the number of labeled simple connected graphs with n vertices and exactly k bridges.
+10
7
1, 1, 0, 0, 1, 0, 1, 0, 3, 0, 10, 12, 0, 16, 0, 253, 200, 150, 0, 125, 0, 11968, 7680, 3600, 2160, 0, 1296, 0, 1047613, 506856, 190365, 68600, 36015, 0, 16807, 0, 169181040, 58934848, 16353792, 4695040, 1433600, 688128, 0, 262144, 0, 51017714393, 12205506096, 2397804444, 500828832, 121706550, 33067440, 14880348, 0, 4782969, 0
OFFSET
0,9
COMMENTS
A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
Warning: In order to be consistent with A001187, we have treated the n = 0 and n = 1 cases in ways that are not consistent with A095983.
EXAMPLE
Triangle begins:
1
1 0
0 1 0
1 0 3 0
10 12 0 16 0
253 200 150 0 125 0
MATHEMATICA
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[If[n<=1&&k==0, 1, Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#, i]]<n||Length[csm[Delete[#, i]]]>1, {i, Length[#]}], True]==k&]]], {n, 0, 4}, {k, 0, n}]
PROG
(PARI) \\ p is e.g.f. of A053549.
T(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))), v=Vec(1+serreverse(serreverse(log(x/serreverse(x*exp(p))))/exp(x*y+O(x^n))))); vector(#v, k, max(0, k-2)!*Vecrev(v[k], k)) }
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 28 2020
CROSSREFS
Column k = 0 is A095983, if we assume A095983(0) = A095983(1) = 1.
Column k = 1 is A327073.
Column k = n - 1 is A000272.
Row sums are A001187.
The unlabeled version is A327077.
Row sums without the first column are A327071.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Aug 24 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Dec 28 2020
STATUS
approved
Number of unlabeled simple graphs with n vertices whose edge-set is not connected.
+10
5
1, 1, 1, 1, 2, 4, 14, 49, 234, 1476, 15405, 307536, 12651788, 1044977929, 167207997404, 50838593828724, 29156171171238607, 31484900549777534887, 64064043979274771429379, 246064055301339083624989655, 1788069981480210465772374023323, 24641385885409824180500407923934750
OFFSET
0,5
FORMULA
a(n) = 1 + A000088(n) - Sum_{i = 1..n} A001349(i).
EXAMPLE
The a(4) = 2 through a(6) = 14 edge-sets:
{} {} {}
{12,34} {12,34} {12,34}
{12,35,45} {12,34,56}
{12,34,35,45} {12,35,45}
{12,34,35,45}
{12,35,46,56}
{12,36,46,56}
{13,23,46,56}
{12,34,35,46,56}
{12,36,45,46,56}
{13,23,45,46,56}
{12,13,23,45,46,56}
{12,35,36,45,46,56}
{12,34,35,36,45,46,56}
PROG
(Python)
from functools import lru_cache
from itertools import combinations
from fractions import Fraction
from math import prod, gcd, factorial
from sympy import mobius, divisors
from sympy.utilities.iterables import partitions
def A327235(n):
if n == 0: return 1
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items()), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
@lru_cache(maxsize=None)
def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1, n))
def a(n): return sum(mobius(n//d)*c(d) for d in divisors(n, generator=True))//n if n else 1
return 1+b(n)-sum(a(i) for i in range(1, n+1)) # Chai Wah Wu, Jul 03 2024
CROSSREFS
Unlabeled non-connected graphs are A000719.
Partial sums of A327075.
The labeled version is A327199.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 01 2019
EXTENSIONS
a(20)-a(21) from Chai Wah Wu, Jul 03 2024
STATUS
approved
The number of connected simple labeled graphs with <= n nodes.
+10
3
1, 2, 4, 11, 65, 974, 31744, 2069971, 267270041, 68629753650, 35171000942708, 36024807353574291, 73784587576805254665, 302228602363365451957806, 2475873310144021668263093216, 40564787336902311168400640561099
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{i=0..n} binomial(n,i)*A001187(i).
E.g.f.: exp(x)*A(x) where A(x) is e.g.f. for A001187.
a(n) = A327078(n) + n. - Gus Wiseman, Sep 03 2019
EXAMPLE
From Gus Wiseman, Sep 03 2019: (Start)
The a(0) = 1 through a(3) = 11 edge-sets (singletons represent uncovered vertices):
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{1,2}} {{3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
(End)
MATHEMATICA
nn = 15; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[Exp[x] (Log[g] + 1), {x, 0, nn}], x]
CROSSREFS
The unlabeled version is A292300(n) + 1.
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Apr 11 2012
STATUS
approved

Search completed in 0.010 seconds