[go: up one dir, main page]

login
Search: a051797 -id:a051797
     Sort: relevance | references | number | modified | created      Format: long | short | data
Partial sums of A051797.
+20
4
1, 13, 63, 203, 518, 1134, 2226, 4026, 6831, 11011, 17017, 25389, 36764, 51884, 71604, 96900, 128877, 168777, 217987, 278047, 350658, 437690, 541190, 663390, 806715, 973791, 1167453, 1390753, 1646968, 1939608, 2272424, 2649416, 3074841, 3553221, 4089351, 4688307, 5355454, 6096454
OFFSET
0,2
COMMENTS
Convolution of triangular numbers (A000217) and decagonal numbers (A001107). [Bruno Berselli, Jul 21 2015]
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.
FORMULA
a(n) = binomial(n+4, 4)*(8*n+5)/5.
G.f.: (1+7*x)/(1-x)^6.
E.g.f.: (120 +*1440*x +2280*x^2 +1040*x^3 +165*x^4 +8*x^5)*exp(x)/120. - G. C. Greubel, Aug 30 2019
MAPLE
seq((8*n+5)*binomial(n+4, 4)/5, n=0..40); # G. C. Greubel, Aug 30 2019
MATHEMATICA
Table[(8*n+5)*Binomial[n+4, 4]/5, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011, modified by G. C. Greubel, Aug 30 2019 *)
PROG
(PARI) vector(40, n, (8*n-3)*binomial(n+3, 4)/5) \\ G. C. Greubel, Aug 30 2019
(Magma) [(8*n+5)*Binomial(n+4, 4)/5: n in [0..40]]; // G. C. Greubel, Aug 30 2019
(Sage) [(8*n+5)*binomial(n+4, 4)/5 for n in (0..30)] # G. C. Greubel, Aug 30 2019
(GAP) List([0..40], n-> (8*n+5)*Binomial(n+4, 4)/5); # G. C. Greubel, Aug 30 2019
CROSSREFS
Cf. A093565 ((8, 1) Pascal, column m=5).
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Dec 14 1999
EXTENSIONS
Terms a(28) onward added by G. C. Greubel, Aug 30 2019
STATUS
approved
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
+10
89
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
OFFSET
1,2
COMMENTS
Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.
LINKS
FORMULA
T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.
EXAMPLE
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
MATHEMATICA
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
PROG
(PARI)
t(n, k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k, n - k + 1), ", "); ); print(); ); };
tabl(12) \\ Indranil Ghosh, Mar 26 2017
(Python)
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
CROSSREFS
Cf. A000027.
KEYWORD
nonn,easy,tabl
AUTHOR
Clark Kimberling, Jun 14 2012
STATUS
approved
Square array of 4D pyramidal numbers, read by antidiagonals.
+10
16
1, 1, 4, 1, 5, 10, 1, 6, 15, 20, 1, 7, 20, 35, 35, 1, 8, 25, 50, 70, 56, 1, 9, 30, 65, 105, 126, 84, 1, 10, 35, 80, 140, 196, 210, 120, 1, 11, 40, 95, 175, 266, 336, 330, 165, 1, 12, 45, 110, 210, 336, 462, 540, 495, 220, 1, 13, 50, 125, 245, 406, 588, 750, 825, 715, 286
OFFSET
0,3
COMMENTS
The first row contains the tetrahedral numbers, which are really three-dimensional, but can be regarded as degenerate 4D pyramidal numbers. - N. J. A. Sloane, Aug 28 2015
FORMULA
T(n, k) = binomial(k + 4, 4) + (n-1)*binomial(k + 3, 4), corrected Oct 01 2021.
T(n, k) = T(n - 1, k) + C(k + 3, 4) = T(n - 1, k) + k(k + 1)(k + 2)(k + 3)/24.
G.f. for rows: (1 + nx)/(1 - x)^5, n >= -1.
T(n,k) = sum_{j=0..k} A080851(n,j). - R. J. Mathar, Jul 28 2016
EXAMPLE
Array, n >= 0, k >= 0, begins
1 4 10 20 35 56 ...
1 5 15 35 70 126 ...
1 6 20 50 105 196 ...
1 7 25 65 140 266 ...
1 8 30 80 175 336 ...
MAPLE
A080852 := proc(n, k)
binomial(k+4, 4)+(n-1)*binomial(k+3, 4) ;
end proc:
seq( seq(A080852(d-k, k), k=0..d), d=0..12) ; # R. J. Mathar, Oct 01 2021
MATHEMATICA
T[n_, k_] := Binomial[k+3, 3] + Binomial[k+3, 4]n;
Table[T[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 05 2023 *)
PROG
(Derive) vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^5, x, 11), x, n), n, 0, 11), k, -1, 10)
(Derive) VECTOR(VECTOR(comb(k+3, 3)+comb(k+3, 4)n, k, 0, 11), n, 0, 11)
CROSSREFS
Cf. A057145, A080851, A180266, A055796 (antidiagonal sums).
See A257200 for another version of the array.
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 21 2003
STATUS
approved
(8,1) Pascal triangle.
+10
15
1, 8, 1, 8, 9, 1, 8, 17, 10, 1, 8, 25, 27, 11, 1, 8, 33, 52, 38, 12, 1, 8, 41, 85, 90, 50, 13, 1, 8, 49, 126, 175, 140, 63, 14, 1, 8, 57, 175, 301, 315, 203, 77, 15, 1, 8, 65, 232, 476, 616, 518, 280, 92, 16, 1, 8, 73, 297, 708, 1092, 1134, 798, 372, 108, 17, 1, 8, 81, 370, 1005
OFFSET
0,2
COMMENTS
The array F(8;n,m) gives in the columns m>=1 the figurate numbers based on A017077, including the decagonal numbers A001107,(see the W. Lang link).
This is the eighth member, d=8, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-4, for d=1..7.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=(1+7*z)/(1-(1+x)*z).
The SW-NE diagonals give A022098(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 7. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
REFERENCES
Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
FORMULA
a(n, m)=F(8;n-m, m) for 0<= m <= n, otherwise 0, with F(8;0, 0)=1, F(8;n, 0)=8 if n>=1 and F(8;n, m):=(8*n+m)*binomial(n+m-1, m-1)/m if m>=1.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=8 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (1+7*x)/(1-x)^(m+1), m>=0.
T(n, k) = C(n, k) + 7*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(8 + 17*x + 10*x^2/2! + x^3/3!) = 8 + 25*x + 52*x^2/2! + 90*x^3/3! + 140*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
EXAMPLE
Triangle begins
[1];
[8, 1];
[8, 9, 1];
[8, 17, 10, 1];
...
PROG
(Haskell)
a093565 n k = a093565_tabl !! n !! k
a093565_row n = a093565_tabl !! n
a093565_tabl = [1] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [8, 1]
-- Reinhard Zumkeller, Aug 31 2014
CROSSREFS
Row sums: A005010(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 7 for n=2 and 0 else.
The column sequences give for m=1..9: A017077, A001107 (decagonal), A007585, A051797, A051878, A050404, A052226, A056001, A056122.
Cf. A093644 (d=9).
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Apr 22 2004
STATUS
approved
Convolution of natural numbers (A000027) with tetradecagonal numbers (A051866).
+10
13
0, 1, 16, 70, 200, 455, 896, 1596, 2640, 4125, 6160, 8866, 12376, 16835, 22400, 29240, 37536, 47481, 59280, 73150, 89320, 108031, 129536, 154100, 182000, 213525, 248976, 288666, 332920, 382075, 436480, 496496, 562496, 634865, 714000, 800310, 894216, 996151
OFFSET
0,3
COMMENTS
Partial sums of A172073.
Apart from 0, all terms are in A135021: a(n) = A135021(A034856(n+1)) with n>0.
FORMULA
G.f.: x*(1+11*x)/(1-x)^5.
a(n) = n*(n+1)*(n+2)*(3*n-2)/6.
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*(3*sqrt(3)*Pi + 27*log(3) - 17)/80.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(6*sqrt(3)*Pi - 64*log(2) + 37)/80. (End)
MATHEMATICA
A051866[k_] := k (6 k - 5); Table[Sum[(n - k + 1) A051866[k], {k, 0, n}], {n, 0, 37}]
CoefficientList[Series[x (1 + 11 x) / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
PROG
(Magma) A051866:=func<n | n*(6*n-5)>; [&+[(n-k+1)*A051866(k): k in [0..n]]: n in [0..37]];
(Magma) I:=[0, 1, 16, 70, 200]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
CROSSREFS
Cf. convolution of the natural numbers (A000027) with the k-gonal numbers (* means "except 0"):
k= 2 (A000027 ): A000292;
k= 3 (A000217 ): A000332 (after the third term);
k= 4 (A000290 ): A002415 (after the first term);
k= 5 (A000326 ): A001296;
k= 6 (A000384*): A002417;
k= 7 (A000566 ): A002418;
k= 8 (A000567*): A002419;
k= 9 (A001106*): A051740;
k=10 (A001107*): A051797;
k=11 (A051682*): A051798;
k=12 (A051624*): A051799;
k=13 (A051865*): A055268.
Cf. similar sequences with formula n*(n+1)*(n+2)*(k*n-k+2)/12 listed in A264850.
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 08 2012
STATUS
approved
Rectangular array: (row n) = b**c, where b(h) = h, c(h) = 4*n-7+4*h, n>=1, h>=1, and ** = convolution.
+10
6
1, 7, 5, 22, 19, 9, 50, 46, 31, 13, 95, 90, 70, 43, 17, 161, 155, 130, 94, 55, 21, 252, 245, 215, 170, 118, 67, 25, 372, 364, 329, 275, 210, 142, 79, 29, 525, 516, 476, 413, 335, 250, 166, 91, 33, 715, 705, 660, 588, 497, 395
OFFSET
1,2
COMMENTS
Principal diagonal: A172078.
Antidiagonal sums: A051797.
Row 1, (1,2,3,4,5,...)**(1,5,9,13,...): A002412.
Row 2, (1,2,3,4,5,...)**(5,9,13,17,...): (4*k^3 + 15*k^2 - 11*k)/6.
Row 3, (1,2,3,4,5,...)**(9,13,17,21,...): (4*k^3 + 27*k^2 - 23*k)/6
For a guide to related arrays, see A212500.
LINKS
FORMULA
T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*((4*n-3) + (4*n-7)*x) and g(x) = (1-x)^4.
EXAMPLE
Northwest corner (the array is read by falling antidiagonals):
1....7....22....50....95
5....19...46....90....155
9....31...70....130...215
13...43...94....170...275
17...55...118...210...335
21...67...142...250...395
MATHEMATICA
b[n_]:=n; c[n_]:=4n-3;
t[n_, k_]:=Sum[b[k-i]c[n+i], {i, 0, k-1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:=Table[t[n, k], {k, 1, 60}] (* A213835 *)
Table[t[n, n], {n, 1, 40}] (* A172078 *)
s[n_]:=Sum[t[i, n+1-i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A051797 *)
CROSSREFS
Cf. A212500.
Cf. A304659 (first lower diagonal).
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Jul 04 2012
STATUS
approved
a(n) = n*(n + 1)*(n + 2)*(7*n - 5)/12.
+10
3
0, 1, 18, 80, 230, 525, 1036, 1848, 3060, 4785, 7150, 10296, 14378, 19565, 26040, 34000, 43656, 55233, 68970, 85120, 103950, 125741, 150788, 179400, 211900, 248625, 289926, 336168, 387730, 445005, 508400, 578336, 655248, 739585, 831810, 932400, 1041846
OFFSET
0,3
COMMENTS
Partial sums of 16-gonal (or hexadecagonal) pyramidal numbers. Therefore, this is the case k=7 of the general formula n*(n + 1)*(n + 2)*(k*n - k + 2)/12, which is related to 2*(k+1)-gonal pyramidal numbers.
FORMULA
G.f.: x*(1 + 13*x)/(1 - x)^5.
a(n) = Sum_{k = 0..n} A172076(k).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 27 2015
MATHEMATICA
Table[n (n + 1) (n + 2) (7 n - 5)/12, {n, 0, 50}]
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 18, 80, 230}, 40] (* Harvey P. Dale, Sep 27 2018 *)
PROG
(Magma) [n*(n+1)*(n+2)*(7*n-5)/12: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015
(PARI) a(n)=n*(n+1)*(n+2)*(7*n-5)/12 \\ Charles R Greathouse IV, Jul 26 2016
CROSSREFS
Cf. A172076.
Cf. similar sequences with formula n*(n+1)*(n+2)*(k*n-k+2)/12: A000292 (k=0), A002415 (which arises from k=1), A002417 (k=2), A002419 (k=3), A051797 (k=4), A051799 (k=5), A220212 (k=6), this sequence (k=7), A264851 (k=8), A264852 (k=9).
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Nov 26 2015
STATUS
approved

Search completed in 0.009 seconds