OFFSET
1,2
COMMENTS
An m-star is an m-antichain with a smallest element adjoined. Then, a(n) is the number of proper mergings of a 3-star and an (n-1)-chain. - Henri Mühle, Jan 23 2013
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..1000
Henri Muehle, Proper Mergings of Stars and Chains are Counted by Sums of Antidiagonals in Certain Convolution Arrays -- The Details, arXiv preprint arXiv:1301.1654 [math.CO], 2013.
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = n*(1 + n)^2*(2 + n)*(16 + 18*n + 21*n^2 + 12*n^3 + 3*n^4)/840.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9).
G.f.: x*(1 + x)*(1 + 4*x + x^2)*(1 + 10*x + x^2)/(1 - x)^9.
MATHEMATICA
(See A213558.)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 17 2012
STATUS
approved