[go: up one dir, main page]

login
Search: a051716 -id:a051716
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerators of sum (C(n) = A051716/A051717) + (1 followed by first differences A172083/A051717 of Bernoulli numbers).
+20
1
2, -2, 1, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, -7, -3617, 3617, 43867, -43867, -174611, 174611, 854513, -854513, -236364091, 236364091, 8553103, -8553103, -23749461029, 23749461029, 8615841276005, -8615841276005, -7709321041217, 7709321041217, 2577687858367, -2577687858367
OFFSET
0,1
COMMENTS
Denominators: 1, 1, 3, 3, 15, 15, 21, 21, 15, 15, 33, 33, 1365, 1365, ... = A001897 with terms repeated. See A000367/A002445.
KEYWORD
sign,frac
AUTHOR
Paul Curtz, Jan 25 2010
EXTENSIONS
Name edited by Michel Marcus, Jan 30 2021
Clarified definition, added more terms. - N. J. A. Sloane, Apr 22 2021
STATUS
approved
From Bernoulli twin numbers to Catalan numbers arrays (*).First part.We consider array, from Bernoulli twin numbers A051716/A051717 mixed with their companion A172083/A051717 BTC(n)=1,1,-1/2,-3/2,-1/3,2/3,-1/6,-1/6, and successive differences ,named BTC1. a(n) are numerators of BTC(n).Denominators are (double A051717)=1,1,2,2,3,3,6,6,30,30,30,30,.
+20
1
1, 1, -1, -3, -1, 2, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 5, 5
OFFSET
0,4
COMMENTS
(*) Even case:ECT(n) in A176239. BTC(n) are not Bi-Bernoulli numbers (absolute values of mixed sequences are not the same like BB1(n) in A176144 or BB2(n) in A176184). Rows of array BTC1: 1) 1,1,-1/2,-3/2,-1/3,2/3,-1/6,-1/6,-1/30,-1/30,1/30,1/30,1/42,1/42,; 2) 0,-3/2,-1,7/6,1,-5/6,0,2/15,0,2/15,0; 3) -3/2,1/2,13/6,-1/6,-11/6,5/6,2/15,-2/15,2/15,-2/15; 4) 2,5/3,-7/3,-5/3,8/3,-7/10,-4/15,4/15,-4/15; 5) -1/3,-4,2/3,13/3,-101/30,13/30,8/15,-8/15; 6) -11/3,14/3,11/3,-77/10,19/5,1/10,-16/15; 7) 25/3,-1, -341/30,23/2,-37/10,-29/30; 8) -28/3,-311/30,343/15,. Correction:in A176150 last term (-517) is false.
KEYWORD
uned,sign
AUTHOR
Paul Curtz, Apr 19 2010
STATUS
approved
From Bernoulli twin numbers to Catalan numbers arrays.Second part.Consider array from companion of Bernoulli twin numbers A172083/A051717 mixed with A051716/A051717 BCT(n)=1,1,-3/2,-1/2,2/3,-1/3,-1/6,-1/6, with successive differences,named BCT1.a(n) are numerators of BCT(n).Denominators (double A051717)=1,1,2,2,3,3,6,6,30,30,30,30,.
+20
0
1, 1, -3, -1, 2, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 5, 5
OFFSET
0,3
COMMENTS
a(n) is A176511 (companion) with A176511(2),A176511(3), A176511(4),A176511(5) swapped by pairs.Rows of BCT1: 1) 1,1,-3/2,-1/2,2/3,-1/3,-1/6,-1/6; 2) 0,-5/2,1,7/6,-1,1/6,0,2/15; 3) -5/2,7/2,1/6,-13/6,7/6,-1/6,2/15,-2/15; 4) 6,-10/3,-7/3,10/3,-4/3,3/10,-4/15,4/15; 5) -28/3,1,17/3,-14/3,49/30,-17/30,8/15,-8/15; 6) 31/3,14/3,-31/3,63/10,-11/5,11/10,16/15; 7) -17/3,-15,499/30,-17/2,33/10,-1/30; 8) -28/3,949/30,-377/15; .Now we subtract first part BTC1 and second BCT1.Hence an array with only integers.We consider it from seventh column from right to left.Columns changed into rows give different possibilities for Catalan numbers A000108 or A000108(n+1). Among them,ECT(n) in A176239. Odd triangle is 1, 1,0,-1, 0,1,-1,0,2, 0,0,1,-2,2,0,-5, 0,0,0,1,-3,5,-5,0,14, .
KEYWORD
uned,sign
AUTHOR
Paul Curtz, Apr 26 2010
STATUS
approved
1, followed by denominators of first differences of Bernoulli numbers (B(i)-B(i-1)).
+10
30
1, 2, 3, 6, 30, 30, 42, 42, 30, 30, 66, 66, 2730, 2730, 6, 6, 510, 510, 798, 798, 330, 330, 138, 138, 2730, 2730, 6, 6, 870, 870, 14322, 14322, 510, 510, 6, 6, 1919190, 1919190, 6, 6, 13530, 13530, 1806, 1806, 690, 690, 282, 282, 46410, 46410, 66, 66, 1590, 1590
OFFSET
0,2
COMMENTS
Equivalently, denominators of Bernoulli twin numbers C(n) (cf. A051716).
The Bernoulli twin numbers C(n) are defined by C(0) = 1, then C(2n) = B(2n) + B(2n-1), C(2n+1) = -B(2n+1) - B(2n), where B() are the Bernoulli numbers A027641/A027642. The definition is due to Paul Curtz.
Denominators of column 1 of table described in A051714/A051715.
LINKS
M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
EXAMPLE
Bernoulli numbers: 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
First differences: -3/2, 2/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, ...
Numerators: -3, 2, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, ...
Denominators: 2, 3, 6, 30, 30, 42, 42, 30, 30, 66, 66, 2730, ...
Sequence of C(n)'s begins: 1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, -691/2730, 691/2730, 7/6, -7/6, ...
MAPLE
C:=proc(n) if n=0 then RETURN(1); fi; if n mod 2 = 0 then RETURN(bernoulli(n)+bernoulli(n-1)); else RETURN(-bernoulli(n)-bernoulli(n-1)); fi; end;
MATHEMATICA
c[0]= 1; c[n_?EvenQ]:= BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ]:= -BernoulliB[n] - BernoulliB[n-1]; Table[Denominator[c[n]], {n, 0, 53}] (* Jean-François Alcover, Dec 19 2011 *)
Join[{1}, Denominator[Total/@Partition[BernoulliB[Range[0, 60]], 2, 1]]] (* Harvey P. Dale, Mar 09 2013 *)
Join[{1}, Denominator[Differences[BernoulliB[Range[0, 60]]]]] (* Harvey P. Dale, Jun 28 2021 *)
PROG
(PARI) a(n)=if(n<3, n+1, denominator(bernfrac(n)-bernfrac(n-1))) \\ Charles R Greathouse IV, May 18 2015
(Magma)
f:= func< n | Bernoulli(n) + Bernoulli(n-1) >;
function A051717(n)
if n eq 0 then return 1;
elif (n mod 2) eq 0 then return Denominator(f(n));
else return Denominator(-f(n));
end if;
end function;
[A051717(n): n in [0..50]]; // G. C. Greubel, Apr 22 2023
(SageMath)
def f(n): return bernoulli(n)+bernoulli(n-1)
def A051717(n):
if (n==0): return 1
elif (n%2==0): return denominator(f(n))
else: return denominator(-f(n))
[A051717(n) for n in range(51)] # G. C. Greubel, Apr 22 2023
CROSSREFS
Cf. A129724.
For numerators see A172083.
KEYWORD
nonn,easy,nice,frac
EXTENSIONS
More terms from James A. Sellers, Dec 08 1999
Edited by N. J. A. Sloane, May 25 2008
Entry revised by N. J. A. Sloane, Apr 22 2021
STATUS
approved
The denominators of the subdiagonal in the difference table of the Bernoulli numbers.
+10
26
2, 6, 15, 105, 105, 231, 15015, 2145, 36465, 969969, 4849845, 10140585, 10140585, 22287, 3231615, 7713865005, 7713865005, 90751353, 218257003965, 1641030105, 67282234305, 368217318651, 1841086593255
OFFSET
0,1
COMMENTS
The denominators of the T(n, n+1) with T(0, m) = A164555(m)/A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0. For the numerators of the T(n, n+1) see A191972.
The T(n, m) are defined by A164555(n)/A027642(n) and its successive differences, see the formulas.
Reading the array T(n, m), see the examples, by its antidiagonals leads to A085737(n)/A085738(n).
A164555(n)/A027642(n) is an autosequence (eigensequence whose inverse binomial transform is the sequence signed) of the second kind; the main diagonal T(n, n) is twice the first upper diagonal T(n, n+1).
We can get the Bernoulli numbers from the T(n, n+1) in an original way, see A192456/A191302.
Also the denominators of T(n, n+1) of the table defined by A085737(n)/A085738(n), the upper diagonal, called the median Bernoulli numbers by Chen. As such, Chen proved that a(n) is even only for n=0 and n=1 and that a(n) are squarefree numbers. (see Chen link). - Michel Marcus, Feb 01 2013
The sum of the antidiagonals of T(n,m) is 1 in the first antidiagonal, otherwise 0. Paul Curtz, Feb 03 2015
REFERENCES
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
LINKS
Kwang-Wu Chen, A summation on Bernoulli numbers, Journal of Number Theory, Volume 111, Issue 2, April 2005, Pages 372-391.
FORMULA
T(0, m) = A164555(m)/A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0.
T(1, m) = A051716(m+1)/A051717(m+1);
T(n, n) = 2*T(n, n+1).
T(n+1, n+1) = (-1)^(1+n)*A181130(n+1)/A181131(n+1). - R. J. Mathar, Jun 18 2011
a(n) = A141044(n)*A181131(n). - Paul Curtz, Apr 21 2013
EXAMPLE
The first few rows of the T(n, m) array (difference table of the Bernoulli numbers) are:
1, 1/2, 1/6, 0, -1/30, 0, 1/42,
-1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42,
1/6, 1/6, 2/15, 1/15, -1/105, -1/21, -1/105,
0, -1/30, -1/15, -8/105, -4/105, 4/105, 8/105,
-1/30, -1/30, -1/105, 4/105, 8/105, 4/105, -116/1155,
0, 1/42, 1/21, 4/105, -4/105, -32/231, -16/231,
1/42, 1/42, -1/105, -8/105, -116/1155, 16/231, 6112/15015,
MAPLE
T := proc(n, m)
option remember;
if n < 0 or m < 0 then
0 ;
elif n = 0 then
if m = 1 then
-bernoulli(m) ;
else
bernoulli(m) ;
end if;
else
procname(n-1, m+1)-procname(n-1, m) ;
end if;
end proc:
A190339 := proc(n)
denom( T(n+1, n)) ;
end proc: # R. J. Mathar, Apr 25 2013
MATHEMATICA
nmax = 23; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; Diagonal[diff] // Denominator (* Jean-François Alcover, Aug 08 2012 *)
PROG
(Sage)
def A190339_list(n) :
T = matrix(QQ, 2*n+1)
for m in (0..2*n) :
T[0, m] = bernoulli_polynomial(1, m)
for k in range(m-1, -1, -1) :
T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
for m in (0..n-1) : print([T[m, k] for k in (0..n-1)])
return [denominator(T[k, k+1]) for k in (0..n-1)]
A190339_list(7) # Also prints the table as displayed in EXAMPLE. Peter Luschny, Jun 21 2012
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, May 09 2011
EXTENSIONS
Edited and Maple program added by Johannes W. Meijer, Jun 29 2011, Jun 30 2011
New name from Peter Luschny, Jun 21 2012
STATUS
approved
Numerators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)*(a(n,k) - a(n,k+1)), n >= 0, k >= 0.
+10
22
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 1, -1, 1, 1, 2, 1, -1, 0, 1, 1, 5, 2, -3, -1, 1, 1, 1, 3, 5, -1, -1, 1, 0, 1, 1, 7, 5, 0, -4, 1, 1, -1, 1, 1, 4, 7, 1, -1, -1, 1, -1, 0, 1, 1, 9, 28, 49, -29, -5, 8, 1, -5, 5, 1, 1, 5, 3, 8, -7, -9, 5, 7, -5, 5, 0, 1, 1, 11, 15, 27, -28, -343, 295, 200, -44, -1017, 691, -691
OFFSET
0,13
COMMENTS
Leading column gives the Bernoulli numbers A164555/A027642. - corrected by Paul Curtz, Apr 17 2014
FORMULA
From Fabián Pereyra, Jan 14 2023: (Start)
a(n,k) = numerator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)).
E.g.f.: A(x,t) = (x+log(1-t))/(1-t-exp(-x)) = (1+(1/2)*x+(1/6)*x^2/2!-(1/30)*x^4/4!+...)*1 + (1/2+(1/3)*x+(1/6)*x^2/2!+...)*t + (1/3+(1/4)*x+(3/20)*x^2/2!+...)*t^2 + .... (End)
EXAMPLE
Table begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 ...
1/2 1/3 1/4 1/5 1/6 1/7 ...
1/6 1/6 3/20 2/15 5/42 ...
0 1/30 1/20 2/35 5/84 ...
-1/30 -1/30 -3/140 -1/105 ...
Antidiagonals of numerator(a(n,k)):
1;
1, 1;
1, 1, 1;
1, 1, 1, 0;
1, 1, 3, 1, -1;
1, 1, 2, 1, -1, 0;
1, 1, 5, 2, -3, -1, 1;
1, 1, 3, 5, -1, -1, 1, 0;
1, 1, 7, 5, 0, -4, 1, 1, -1;
1, 1, 4, 7, 1, -1, -1, 1, -1, 0;
1, 1, 9, 28, 49, -29, -5, 8, 1, -5, 5;
MAPLE
a:= proc(n, k) option remember;
`if`(n=0, 1/(k+1), (k+1)*(a(n-1, k)-a(n-1, k+1)))
end:
seq(seq(numer(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
MATHEMATICA
nmax = 12; a[0, k_]:= 1/(k+1); a[n_, k_]:= a[n, k]= (k+1)(a[n-1, k]-a[n-1, k+1]); Numerator[Flatten[Table[a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]] (* Jean-François Alcover, Nov 28 2011 *)
PROG
(Magma)
function a(n, k)
if n eq 0 then return 1/(k+1);
else return (k+1)*(a(n-1, k) - a(n-1, k+1));
end if;
end function;
A051714:= func< n, k | Numerator(a(n, k)) >;
[A051714(k, n-k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 22 2023
(SageMath)
def a(n, k):
if (n==0): return 1/(k+1)
else: return (k+1)*(a(n-1, k) - a(n-1, k+1))
def A051714(n, k): return numerator(a(n, k))
flatten([[A051714(k, n-k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Apr 22 2023
CROSSREFS
Denominators are in A051715.
KEYWORD
sign,frac,nice,easy,tabl,look
EXTENSIONS
More terms from James A. Sellers, Dec 07 1999
STATUS
approved
Denominators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)(a(n,k)-a(n,k+1)), n >= 0, k >= 0.
+10
19
1, 2, 2, 3, 3, 6, 4, 4, 6, 1, 5, 5, 20, 30, 30, 6, 6, 15, 20, 30, 1, 7, 7, 42, 35, 140, 42, 42, 8, 8, 28, 84, 105, 28, 42, 1, 9, 9, 72, 84, 1, 105, 140, 30, 30, 10, 10, 45, 120, 140, 28, 105, 20, 30, 1, 11, 11, 110, 495, 3960, 924, 231, 165, 220, 66, 66, 12, 12, 66, 55, 495, 264, 308, 132, 165, 44, 66, 1
OFFSET
0,2
COMMENTS
Leading column gives the Bernoulli numbers A027641/A027642.
FORMULA
a(n,k) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)). - Fabián Pereyra, Jan 14 2023
EXAMPLE
Table begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 ...
1/2 1/3 1/4 1/5 1/6 1/7 ...
1/6 1/6 3/20 2/15 5/42 ...
0 1/30 1/20 2/35 5/84 ...
-1/30 -1/30 -3/140 -1/105 ...
MAPLE
a:= proc(n, k) option remember;
`if`(n=0, 1/(k+1), (k+1)*(a(n-1, k)-a(n-1, k+1)))
end:
seq(seq(denom(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
MATHEMATICA
nmax = 12; a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)(a[n-1, k]-a[n-1, k+1]); Denominator[ Flatten[ Table[ a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]](* Jean-François Alcover, Nov 28 2011 *)
CROSSREFS
Numerators are in A051714.
KEYWORD
nonn,frac,nice,easy,tabl,look
EXTENSIONS
More terms from James A. Sellers, Dec 08 1999
STATUS
approved
Table of the numerators of the fractions of Bernoulli twin numbers and their higher-order differences, read by antidiagonals.
+10
6
-1, 1, -1, -1, 2, -1, -1, -1, 1, 1, 1, -1, -8, -1, 1, 1, 1, 4, -4, -1, -1, -1, -1, 4, 8, 4, -1, -1, -1, -1, -8, -4, 4, 8, 1, 1, 5, 7, -4, -116, -32, -116, -4, 7, 5, 5, 5, 32, 28, 16, -16, -28, -32, -5, -5, -691, -2663, -388, 2524, 5072, 6112, 5072, 2524, -388, -2663, -691, -691, -691, -10264, -10652, -8128, -3056, 3056, 8128, 10652, 10264, 691, 691, 7, 1247, 556, -4148, -2960, -22928
OFFSET
0,5
COMMENTS
Consider the Bernoulli twin numbers C(n) = A051716(n)/A051717(n) in the top row and successive higher order differences in the other rows of an array T(0,k) = C(k), T(n,k) = T(n-1,k+1)-T(n-1,k):
1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, ...
-3/2, 1/6, 1/6, 2/15, 1/15, -1/105, -1/21, -1/105, 1/15, 7/165, -5/33, ...
5/3, 0, -1/30, -1/15, -8/105, -4/105, 4/105, 8/105, -4/165, -32/165, ...
-5/3, -1/30, -1/30, -1/105, 4/105, 8/105, 4/105, -116/1155, -28/165, ...
49/30, 0, 1/42, 1/21, 4/105, -4/105, -32/231, -16/231, 5072/15015, 8128/15015, ...
-49/30, 1/42, 1/42, -1/105, -8/105, -116/1155, 16/231, 6112/15015, ...
Remove the two leftmost columns:
-1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66,-691/2730, 691/2730, ...
1/6, 2/15, 1/15, -1/105, -1/21, -1/105, 1/15, 7/165, -5/33, -2663/15015, 691/1365, ...
-1/30, -1/15, -8/105, -4/105, 4/105, 8/105, -4/165, -32/165, -388/15015, 10264/15015, ...
-1/30, -1/105, 4/105, 8/105, 4/105, -116/1155, -28/165, 2524/15015, ...
1/42, 1/21, 4/105, -4/105, -32/231, -16/231, 5072/15015, 8128/15015, -2960/3003, ...
1/42, -1/105, -8/105, -116/1155, 16/231, 6112/15015, 3056/15015, -22928/15015, -7184/3003, ...
-1/30, -1/15, -4/165, 28/165, 5072/15015, -3056/15015, -3712/2145, ...
-1/30, 7/165, 32/165, 2524/15015, -8128/15015, -22928/15015, ...
and read the numerators upwards along antidiagonals to obtain the current sequence.
The leftmost column (i.e., the inverse binomial transform of the top row) in this chopped variant equals the top row up to a sign pattern (-1)^n.
In that sense, the C(n) with n>=2 are an eigensequence of the inverse binomial transform (i.e., an autosequence).
MAPLE
C := proc(n) if n=0 then 1; elif n mod 2 = 0 then bernoulli(n)+bernoulli(n-1); else -bernoulli(n)-bernoulli(n-1); end if; end proc:
A168516 := proc(n, k) L := [seq(C(i), i=0..n+k+3)] ; for c from 1 to n do L := DIFF(L) ; end do; numer(op(k+3, L)) ; end proc:
for d from 0 to 15 do for k from 0 to d do printf("%a, ", A168516(d-k, k)) ; end do: end do: # R. J. Mathar, Jul 10 2011
MATHEMATICA
max = 13; c[0] = 1; c[n_?EvenQ] := BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ] := -BernoulliB[n] - BernoulliB[n-1]; cc = Table[c[n], {n, 0, max+1}]; diff = Drop[#, 2]& /@ Table[ Differences[cc, n], {n, 0, max-1}]; Flatten[ Table[ diff[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] // Numerator (* Jean-François Alcover, Aug 09 2012 *)
CROSSREFS
Cf. A168426 (denominators), A085737, A085738.
KEYWORD
frac,tabl,sign
AUTHOR
Paul Curtz, Nov 28 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Jul 10 2011
STATUS
approved
Square array of denominators of a truncated array of Bernoulli twin numbers (A168516), read by antidiagonals.
+10
5
3, 6, 6, 30, 15, 30, 30, 15, 15, 30, 42, 105, 105, 105, 42, 42, 21, 105, 105, 21, 42, 30, 105, 105, 105, 105, 105, 30, 30, 15, 105, 105, 105, 105, 15, 30, 66, 165, 165, 1155, 231, 1155, 165, 165, 66, 66, 33, 165, 165, 231, 231, 165, 165, 33, 66, 2730, 15015, 15015, 15015, 15015, 15015, 15015, 15015
OFFSET
0,1
COMMENTS
Entries are multiples of 3.
The sequence of fractions A051716()/A051717() is a sequence of first differences of A164555()/A027642().
It can be observed (see the difference array in A190339) that A168516/A168426 is a sequence of autosequences of the second kind. - Paul Curtz, Dec 21 2016
MATHEMATICA
max = 11; c[0] = 1; c[n_?EvenQ] := BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ] := -BernoulliB[n] - BernoulliB[n-1]; cc = Table[c[n], {n, 0, max+1}]; diff = Drop[#, 2]& /@ Table[ Differences[cc, n], {n, 0, max-1}]; Flatten[ Table[ diff[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] // Denominator (* Jean-François Alcover, Aug 09 2012 *)
KEYWORD
nonn,tabl,frac
AUTHOR
Paul Curtz, Nov 25 2009
EXTENSIONS
More terms from R. J. Mathar, Jul 10 2011
STATUS
approved
a(0) = 1; then a(n) = n!*(1 - (-1)^n*Bernoulli(n-1)).
+10
4
1, 2, 3, 7, 24, 116, 720, 5160, 40320, 350784, 3628800, 42940800, 479001600, 4650877440, 87178291200, 2833294464000, 20922789888000, -2166903606067200, 6402373705728000, 6808619561103360000, 2432902008176640000, -26982365129174827008000, 1124000727777607680000
OFFSET
0,2
LINKS
MAPLE
a:= proc(n)
if n=0 and n>=0 then 1
elif n mod 2 = 0 then n!*(1 - bernoulli(n-1))
else n!*(1 + bernoulli(n-1))
fi; end;
seq(a(n), n=0..25); # modified by G. C. Greubel, Dec 03 2019
MATHEMATICA
a[0] = 1; a[n_]:= n!*(1-(-1)^n*BernoulliB[n-1]); Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Sep 16 2013 *)
PROG
(PARI) a(n) = if(n==0, 1, n!*(1 - (-1)^n*bernfrac(n-1)) ); \\ G. C. Greubel, Dec 03 2019
(Magma) [n eq 0 select 1 else Factorial(n)*(1 - (-1)^n*Bernoulli(n-1)): n in [0..25]]; // G. C. Greubel, Dec 03 2019
(Sage) [1]+[factorial(n)*(1 - (-1)^n*bernoulli(n-1)) for n in (1..25)] # G. C. Greubel, Dec 03 2019
(GAP) Concatenation([1], List([1..25], n-> Factorial(n)*(1 - (-1)^n*Bernoulli(n-1)) )); # G. C. Greubel, Dec 03 2019
KEYWORD
sign
AUTHOR
Paul Curtz, Jun 02 2007
EXTENSIONS
Edited with simpler definition by N. J. A. Sloane, May 25 2008
STATUS
approved

Search completed in 0.018 seconds