Displaying 1-10 of 21 results found.
2, -2, 1, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, -7, -3617, 3617, 43867, -43867, -174611, 174611, 854513, -854513, -236364091, 236364091, 8553103, -8553103, -23749461029, 23749461029, 8615841276005, -8615841276005, -7709321041217, 7709321041217, 2577687858367, -2577687858367
COMMENTS
Denominators: 1, 1, 3, 3, 15, 15, 21, 21, 15, 15, 33, 33, 1365, 1365, ... = A001897 with terms repeated. See A000367/ A002445.
From Bernoulli twin numbers to Catalan numbers arrays (*).First part.We consider array, from Bernoulli twin numbers A051716/ A051717 mixed with their companion A172083/ A051717 BTC(n)=1,1,-1/2,-3/2,-1/3,2/3,-1/6,-1/6, and successive differences ,named BTC1. a(n) are numerators of BTC(n).Denominators are (double A051717)=1,1,2,2,3,3,6,6,30,30,30,30,.
+20
1
1, 1, -1, -3, -1, 2, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 5, 5
COMMENTS
(*) Even case:ECT(n) in A176239. BTC(n) are not Bi-Bernoulli numbers (absolute values of mixed sequences are not the same like BB1(n) in A176144 or BB2(n) in A176184). Rows of array BTC1: 1) 1,1,-1/2,-3/2,-1/3,2/3,-1/6,-1/6,-1/30,-1/30,1/30,1/30,1/42,1/42,; 2) 0,-3/2,-1,7/6,1,-5/6,0,2/15,0,2/15,0; 3) -3/2,1/2,13/6,-1/6,-11/6,5/6,2/15,-2/15,2/15,-2/15; 4) 2,5/3,-7/3,-5/3,8/3,-7/10,-4/15,4/15,-4/15; 5) -1/3,-4,2/3,13/3,-101/30,13/30,8/15,-8/15; 6) -11/3,14/3,11/3,-77/10,19/5,1/10,-16/15; 7) 25/3,-1, -341/30,23/2,-37/10,-29/30; 8) -28/3,-311/30,343/15,. Correction:in A176150 last term (-517) is false.
From Bernoulli twin numbers to Catalan numbers arrays.Second part.Consider array from companion of Bernoulli twin numbers A172083/ A051717 mixed with A051716/ A051717 BCT(n)=1,1,-3/2,-1/2,2/3,-1/3,-1/6,-1/6, with successive differences,named BCT1.a(n) are numerators of BCT(n).Denominators (double A051717)=1,1,2,2,3,3,6,6,30,30,30,30,.
+20
0
1, 1, -3, -1, 2, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 5, 5
COMMENTS
a(n) is A176511 (companion) with A176511(2), A176511(3), A176511(4), A176511(5) swapped by pairs.Rows of BCT1: 1) 1,1,-3/2,-1/2,2/3,-1/3,-1/6,-1/6; 2) 0,-5/2,1,7/6,-1,1/6,0,2/15; 3) -5/2,7/2,1/6,-13/6,7/6,-1/6,2/15,-2/15; 4) 6,-10/3,-7/3,10/3,-4/3,3/10,-4/15,4/15; 5) -28/3,1,17/3,-14/3,49/30,-17/30,8/15,-8/15; 6) 31/3,14/3,-31/3,63/10,-11/5,11/10,16/15; 7) -17/3,-15,499/30,-17/2,33/10,-1/30; 8) -28/3,949/30,-377/15; .Now we subtract first part BTC1 and second BCT1.Hence an array with only integers.We consider it from seventh column from right to left.Columns changed into rows give different possibilities for Catalan numbers A000108 or A000108(n+1). Among them,ECT(n) in A176239. Odd triangle is 1, 1,0,-1, 0,1,-1,0,2, 0,0,1,-2,2,0,-5, 0,0,0,1,-3,5,-5,0,14, .
1, followed by denominators of first differences of Bernoulli numbers (B(i)-B(i-1)).
+10
30
1, 2, 3, 6, 30, 30, 42, 42, 30, 30, 66, 66, 2730, 2730, 6, 6, 510, 510, 798, 798, 330, 330, 138, 138, 2730, 2730, 6, 6, 870, 870, 14322, 14322, 510, 510, 6, 6, 1919190, 1919190, 6, 6, 13530, 13530, 1806, 1806, 690, 690, 282, 282, 46410, 46410, 66, 66, 1590, 1590
COMMENTS
Equivalently, denominators of Bernoulli twin numbers C(n) (cf. A051716).
The Bernoulli twin numbers C(n) are defined by C(0) = 1, then C(2n) = B(2n) + B(2n-1), C(2n+1) = -B(2n+1) - B(2n), where B() are the Bernoulli numbers A027641/ A027642. The definition is due to Paul Curtz.
EXAMPLE
Bernoulli numbers: 1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, ...
First differences: -3/2, 2/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, ...
Numerators: -3, 2, -1, -1, 1, 1, -1, -1, 1, 5, -5, -691, 691, 7, ...
Denominators: 2, 3, 6, 30, 30, 42, 42, 30, 30, 66, 66, 2730, ...
Sequence of C(n)'s begins: 1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, -691/2730, 691/2730, 7/6, -7/6, ...
MAPLE
C:=proc(n) if n=0 then RETURN(1); fi; if n mod 2 = 0 then RETURN(bernoulli(n)+bernoulli(n-1)); else RETURN(-bernoulli(n)-bernoulli(n-1)); fi; end;
MATHEMATICA
c[0]= 1; c[n_?EvenQ]:= BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ]:= -BernoulliB[n] - BernoulliB[n-1]; Table[Denominator[c[n]], {n, 0, 53}] (* Jean-François Alcover, Dec 19 2011 *)
Join[{1}, Denominator[Total/@Partition[BernoulliB[Range[0, 60]], 2, 1]]] (* Harvey P. Dale, Mar 09 2013 *)
Join[{1}, Denominator[Differences[BernoulliB[Range[0, 60]]]]] (* Harvey P. Dale, Jun 28 2021 *)
PROG
(Magma)
f:= func< n | Bernoulli(n) + Bernoulli(n-1) >;
if n eq 0 then return 1;
elif (n mod 2) eq 0 then return Denominator(f(n));
else return Denominator(-f(n));
end if;
end function;
(SageMath)
def f(n): return bernoulli(n)+bernoulli(n-1)
if (n==0): return 1
elif (n%2==0): return denominator(f(n))
else: return denominator(-f(n))
The denominators of the subdiagonal in the difference table of the Bernoulli numbers.
+10
26
2, 6, 15, 105, 105, 231, 15015, 2145, 36465, 969969, 4849845, 10140585, 10140585, 22287, 3231615, 7713865005, 7713865005, 90751353, 218257003965, 1641030105, 67282234305, 368217318651, 1841086593255
COMMENTS
The denominators of the T(n, n+1) with T(0, m) = A164555(m)/ A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0. For the numerators of the T(n, n+1) see A191972.
The T(n, m) are defined by A164555(n)/ A027642(n) and its successive differences, see the formulas.
Reading the array T(n, m), see the examples, by its antidiagonals leads to A085737(n)/ A085738(n).
A164555(n)/ A027642(n) is an autosequence (eigensequence whose inverse binomial transform is the sequence signed) of the second kind; the main diagonal T(n, n) is twice the first upper diagonal T(n, n+1).
We can get the Bernoulli numbers from the T(n, n+1) in an original way, see A192456/ A191302.
Also the denominators of T(n, n+1) of the table defined by A085737(n)/ A085738(n), the upper diagonal, called the median Bernoulli numbers by Chen. As such, Chen proved that a(n) is even only for n=0 and n=1 and that a(n) are squarefree numbers. (see Chen link). - Michel Marcus, Feb 01 2013
The sum of the antidiagonals of T(n,m) is 1 in the first antidiagonal, otherwise 0. Paul Curtz, Feb 03 2015
REFERENCES
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
FORMULA
T(0, m) = A164555(m)/ A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0.
T(n, n) = 2*T(n, n+1).
EXAMPLE
The first few rows of the T(n, m) array (difference table of the Bernoulli numbers) are:
1, 1/2, 1/6, 0, -1/30, 0, 1/42,
-1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42,
1/6, 1/6, 2/15, 1/15, -1/105, -1/21, -1/105,
0, -1/30, -1/15, -8/105, -4/105, 4/105, 8/105,
-1/30, -1/30, -1/105, 4/105, 8/105, 4/105, -116/1155,
0, 1/42, 1/21, 4/105, -4/105, -32/231, -16/231,
1/42, 1/42, -1/105, -8/105, -116/1155, 16/231, 6112/15015,
MAPLE
T := proc(n, m)
option remember;
if n < 0 or m < 0 then
0 ;
elif n = 0 then
if m = 1 then
-bernoulli(m) ;
else
bernoulli(m) ;
end if;
else
procname(n-1, m+1)-procname(n-1, m) ;
end if;
end proc:
denom( T(n+1, n)) ;
MATHEMATICA
nmax = 23; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[Differences[bb, n], {n, 1, nmax}]; Diagonal[diff] // Denominator (* Jean-François Alcover, Aug 08 2012 *)
PROG
(Sage)
T = matrix(QQ, 2*n+1)
for m in (0..2*n) :
T[0, m] = bernoulli_polynomial(1, m)
for k in range(m-1, -1, -1) :
T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
for m in (0..n-1) : print([T[m, k] for k in (0..n-1)])
return [denominator(T[k, k+1]) for k in (0..n-1)]
Numerators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)*(a(n,k) - a(n,k+1)), n >= 0, k >= 0.
+10
22
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 3, 1, -1, 1, 1, 2, 1, -1, 0, 1, 1, 5, 2, -3, -1, 1, 1, 1, 3, 5, -1, -1, 1, 0, 1, 1, 7, 5, 0, -4, 1, 1, -1, 1, 1, 4, 7, 1, -1, -1, 1, -1, 0, 1, 1, 9, 28, 49, -29, -5, 8, 1, -5, 5, 1, 1, 5, 3, 8, -7, -9, 5, 7, -5, 5, 0, 1, 1, 11, 15, 27, -28, -343, 295, 200, -44, -1017, 691, -691
FORMULA
a(n,k) = numerator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)).
E.g.f.: A(x,t) = (x+log(1-t))/(1-t-exp(-x)) = (1+(1/2)*x+(1/6)*x^2/2!-(1/30)*x^4/4!+...)*1 + (1/2+(1/3)*x+(1/6)*x^2/2!+...)*t + (1/3+(1/4)*x+(3/20)*x^2/2!+...)*t^2 + .... (End)
EXAMPLE
Table begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 ...
1/2 1/3 1/4 1/5 1/6 1/7 ...
1/6 1/6 3/20 2/15 5/42 ...
0 1/30 1/20 2/35 5/84 ...
-1/30 -1/30 -3/140 -1/105 ...
Antidiagonals of numerator(a(n,k)):
1;
1, 1;
1, 1, 1;
1, 1, 1, 0;
1, 1, 3, 1, -1;
1, 1, 2, 1, -1, 0;
1, 1, 5, 2, -3, -1, 1;
1, 1, 3, 5, -1, -1, 1, 0;
1, 1, 7, 5, 0, -4, 1, 1, -1;
1, 1, 4, 7, 1, -1, -1, 1, -1, 0;
1, 1, 9, 28, 49, -29, -5, 8, 1, -5, 5;
MAPLE
a:= proc(n, k) option remember;
`if`(n=0, 1/(k+1), (k+1)*(a(n-1, k)-a(n-1, k+1)))
end:
seq(seq(numer(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
MATHEMATICA
nmax = 12; a[0, k_]:= 1/(k+1); a[n_, k_]:= a[n, k]= (k+1)(a[n-1, k]-a[n-1, k+1]); Numerator[Flatten[Table[a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]] (* Jean-François Alcover, Nov 28 2011 *)
PROG
(Magma)
function a(n, k)
if n eq 0 then return 1/(k+1);
else return (k+1)*(a(n-1, k) - a(n-1, k+1));
end if;
end function;
A051714:= func< n, k | Numerator(a(n, k)) >;
(SageMath)
def a(n, k):
if (n==0): return 1/(k+1)
else: return (k+1)*(a(n-1, k) - a(n-1, k+1))
def A051714(n, k): return numerator(a(n, k))
Denominators of table a(n,k) read by antidiagonals: a(0,k) = 1/(k+1), a(n+1,k) = (k+1)(a(n,k)-a(n,k+1)), n >= 0, k >= 0.
+10
19
1, 2, 2, 3, 3, 6, 4, 4, 6, 1, 5, 5, 20, 30, 30, 6, 6, 15, 20, 30, 1, 7, 7, 42, 35, 140, 42, 42, 8, 8, 28, 84, 105, 28, 42, 1, 9, 9, 72, 84, 1, 105, 140, 30, 30, 10, 10, 45, 120, 140, 28, 105, 20, 30, 1, 11, 11, 110, 495, 3960, 924, 231, 165, 220, 66, 66, 12, 12, 66, 55, 495, 264, 308, 132, 165, 44, 66, 1
FORMULA
a(n,k) = denominator(Sum_{j=0..n} (-1)^(n-j)*j!*Stirling2(n,j)/(j+k+1)). - Fabián Pereyra, Jan 14 2023
EXAMPLE
Table begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 ...
1/2 1/3 1/4 1/5 1/6 1/7 ...
1/6 1/6 3/20 2/15 5/42 ...
0 1/30 1/20 2/35 5/84 ...
-1/30 -1/30 -3/140 -1/105 ...
MAPLE
a:= proc(n, k) option remember;
`if`(n=0, 1/(k+1), (k+1)*(a(n-1, k)-a(n-1, k+1)))
end:
seq(seq(denom(a(n, d-n)), n=0..d), d=0..12); # Alois P. Heinz, Apr 17 2013
MATHEMATICA
nmax = 12; a[0, k_] := 1/(k+1); a[n_, k_] := a[n, k] = (k+1)(a[n-1, k]-a[n-1, k+1]); Denominator[ Flatten[ Table[ a[n-k, k], {n, 0, nmax}, {k, n, 0, -1}]]](* Jean-François Alcover, Nov 28 2011 *)
Table of the numerators of the fractions of Bernoulli twin numbers and their higher-order differences, read by antidiagonals.
+10
6
-1, 1, -1, -1, 2, -1, -1, -1, 1, 1, 1, -1, -8, -1, 1, 1, 1, 4, -4, -1, -1, -1, -1, 4, 8, 4, -1, -1, -1, -1, -8, -4, 4, 8, 1, 1, 5, 7, -4, -116, -32, -116, -4, 7, 5, 5, 5, 32, 28, 16, -16, -28, -32, -5, -5, -691, -2663, -388, 2524, 5072, 6112, 5072, 2524, -388, -2663, -691, -691, -691, -10264, -10652, -8128, -3056, 3056, 8128, 10652, 10264, 691, 691, 7, 1247, 556, -4148, -2960, -22928
COMMENTS
Consider the Bernoulli twin numbers C(n) = A051716(n)/ A051717(n) in the top row and successive higher order differences in the other rows of an array T(0,k) = C(k), T(n,k) = T(n-1,k+1)-T(n-1,k):
1, -1/2, -1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66, ...
-3/2, 1/6, 1/6, 2/15, 1/15, -1/105, -1/21, -1/105, 1/15, 7/165, -5/33, ...
5/3, 0, -1/30, -1/15, -8/105, -4/105, 4/105, 8/105, -4/165, -32/165, ...
-5/3, -1/30, -1/30, -1/105, 4/105, 8/105, 4/105, -116/1155, -28/165, ...
49/30, 0, 1/42, 1/21, 4/105, -4/105, -32/231, -16/231, 5072/15015, 8128/15015, ...
-49/30, 1/42, 1/42, -1/105, -8/105, -116/1155, 16/231, 6112/15015, ...
Remove the two leftmost columns:
-1/3, -1/6, -1/30, 1/30, 1/42, -1/42, -1/30, 1/30, 5/66, -5/66,-691/2730, 691/2730, ...
1/6, 2/15, 1/15, -1/105, -1/21, -1/105, 1/15, 7/165, -5/33, -2663/15015, 691/1365, ...
-1/30, -1/15, -8/105, -4/105, 4/105, 8/105, -4/165, -32/165, -388/15015, 10264/15015, ...
-1/30, -1/105, 4/105, 8/105, 4/105, -116/1155, -28/165, 2524/15015, ...
1/42, 1/21, 4/105, -4/105, -32/231, -16/231, 5072/15015, 8128/15015, -2960/3003, ...
1/42, -1/105, -8/105, -116/1155, 16/231, 6112/15015, 3056/15015, -22928/15015, -7184/3003, ...
-1/30, -1/15, -4/165, 28/165, 5072/15015, -3056/15015, -3712/2145, ...
-1/30, 7/165, 32/165, 2524/15015, -8128/15015, -22928/15015, ...
and read the numerators upwards along antidiagonals to obtain the current sequence.
The leftmost column (i.e., the inverse binomial transform of the top row) in this chopped variant equals the top row up to a sign pattern (-1)^n.
In that sense, the C(n) with n>=2 are an eigensequence of the inverse binomial transform (i.e., an autosequence).
MAPLE
C := proc(n) if n=0 then 1; elif n mod 2 = 0 then bernoulli(n)+bernoulli(n-1); else -bernoulli(n)-bernoulli(n-1); end if; end proc:
A168516 := proc(n, k) L := [seq(C(i), i=0..n+k+3)] ; for c from 1 to n do L := DIFF(L) ; end do; numer(op(k+3, L)) ; end proc:
for d from 0 to 15 do for k from 0 to d do printf("%a, ", A168516(d-k, k)) ; end do: end do: # R. J. Mathar, Jul 10 2011
MATHEMATICA
max = 13; c[0] = 1; c[n_?EvenQ] := BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ] := -BernoulliB[n] - BernoulliB[n-1]; cc = Table[c[n], {n, 0, max+1}]; diff = Drop[#, 2]& /@ Table[ Differences[cc, n], {n, 0, max-1}]; Flatten[ Table[ diff[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] // Numerator (* Jean-François Alcover, Aug 09 2012 *)
Square array of denominators of a truncated array of Bernoulli twin numbers ( A168516), read by antidiagonals.
+10
5
3, 6, 6, 30, 15, 30, 30, 15, 15, 30, 42, 105, 105, 105, 42, 42, 21, 105, 105, 21, 42, 30, 105, 105, 105, 105, 105, 30, 30, 15, 105, 105, 105, 105, 15, 30, 66, 165, 165, 1155, 231, 1155, 165, 165, 66, 66, 33, 165, 165, 231, 231, 165, 165, 33, 66, 2730, 15015, 15015, 15015, 15015, 15015, 15015, 15015
COMMENTS
Entries are multiples of 3.
MATHEMATICA
max = 11; c[0] = 1; c[n_?EvenQ] := BernoulliB[n] + BernoulliB[n-1]; c[n_?OddQ] := -BernoulliB[n] - BernoulliB[n-1]; cc = Table[c[n], {n, 0, max+1}]; diff = Drop[#, 2]& /@ Table[ Differences[cc, n], {n, 0, max-1}]; Flatten[ Table[ diff[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] // Denominator (* Jean-François Alcover, Aug 09 2012 *)
a(0) = 1; then a(n) = n!*(1 - (-1)^n*Bernoulli(n-1)).
+10
4
1, 2, 3, 7, 24, 116, 720, 5160, 40320, 350784, 3628800, 42940800, 479001600, 4650877440, 87178291200, 2833294464000, 20922789888000, -2166903606067200, 6402373705728000, 6808619561103360000, 2432902008176640000, -26982365129174827008000, 1124000727777607680000
MAPLE
a:= proc(n)
if n=0 and n>=0 then 1
elif n mod 2 = 0 then n!*(1 - bernoulli(n-1))
else n!*(1 + bernoulli(n-1))
fi; end;
MATHEMATICA
a[0] = 1; a[n_]:= n!*(1-(-1)^n*BernoulliB[n-1]); Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Sep 16 2013 *)
PROG
(PARI) a(n) = if(n==0, 1, n!*(1 - (-1)^n*bernfrac(n-1)) ); \\ G. C. Greubel, Dec 03 2019
(Magma) [n eq 0 select 1 else Factorial(n)*(1 - (-1)^n*Bernoulli(n-1)): n in [0..25]]; // G. C. Greubel, Dec 03 2019
(Sage) [1]+[factorial(n)*(1 - (-1)^n*bernoulli(n-1)) for n in (1..25)] # G. C. Greubel, Dec 03 2019
(GAP) Concatenation([1], List([1..25], n-> Factorial(n)*(1 - (-1)^n*Bernoulli(n-1)) )); # G. C. Greubel, Dec 03 2019
Search completed in 0.018 seconds
|