[go: up one dir, main page]

login
Search: a049086 -id:a049086
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of ways to tile a 4 X 3n rectangle with right trominoes.
+10
6
1, 4, 18, 88, 468, 2672, 16072, 100064, 636368, 4097984, 26579488, 173093760, 1129796928, 7383588608, 48287978624, 315921649152, 2067346607360, 13530037877760, 88555066819072, 579620448450560, 3793872862974976, 24832858496561152, 162544900186359808
OFFSET
0,2
COMMENTS
The sequence of tiling 2 X 3n rectangles with L-trominoes is 2^n. The sequence of tiling 3 X 2n rectangles is 2^n. All these tilings have vertical faults but no horizontal faults. - R. J. Mathar, Dec 08 2022
This sequence is the Hadamard sum of the following 4 sequences: 0, 0, 16, 64, 256, 1024, 4096... (A000302, tilings which have both vertical and horizontal faults), 0, 4, 0, 0, 0, 0, 0, ...(tilings which have horizontal but no vertical faults), 0, 0, 0, 16, 164, 1360, 10248, 73312, 508624, 3462592, 23291424.. (tilings which have vertical but no horizontal faults), 1, 0, 2, 8, 48, 288, 1728, 10368,.. (essentially A084477, tilings which have neither vertical nor horizontal faults). - R. J. Mathar, Dec 08 2022
REFERENCES
Suggested on p. 96 of 1994 edition of "Polyominoes" by Samuel W. Golomb.
FORMULA
G.f.: (1 - 6*x)/(1 - 10*x + 22*x^2 + 4*x^3).
a(0)=1, a(1)=4, a(2)=18, a(n)=10*a(n-1)-22*a(n-2)-4*a(n-3). - Harvey P. Dale, Mar 31 2012
MAPLE
a:= n-> (<<0|1|0>, <0|0|1>, <-4|-22|10>>^n. <<1, 4, 18>>)[1, 1]:
seq(a(n), n=0..22); # Alois P. Heinz, Feb 21 2022
MATHEMATICA
CoefficientList[Series[(1-6x)/(1-10x+22x^2+4x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{10, -22, -4}, {1, 4, 18}, 40] (* Harvey P. Dale, Mar 31 2012 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -4, -22, 10]^n*[1; 4; 18])[1, 1] \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Cf. A084478 (5 X 3n), A351323 (6 X n), A351324 (7 X 3n), A049086 (straight trominoes), A233339 (mixed trominoes).
KEYWORD
nonn,easy,nice
AUTHOR
Cristopher Moore (moore(AT)santafe.edu)
STATUS
approved
The number of tilings of a 5 X (3n) floor with 1 X 3 trominoes.
+10
5
1, 4, 22, 121, 664, 3643, 19987, 109657, 601624, 3300760, 18109345, 99355414, 545105209, 2990674357, 16408085929, 90021597712, 493896002842, 2709719309845, 14866649448256, 81564634762843, 447497579542135
OFFSET
0,2
COMMENTS
Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
FORMULA
G.f.: (1-x)^2/(1-6*x+3*x^2-x^3).
a(n) = 6*a(n-1) - 3*a(n-2) + a(n-3). - M. Poyraz Torcuk, Oct 24 2021
MAPLE
g := (1-x)^2/(1-6*x+3*x^2-x^3) ;
taylor(%, x=0, 30) ;
gfun[seriestolist](%) ;
MATHEMATICA
CoefficientList[Series[(1 - x)^2/(1 - 6 x + 3 x^2 - x^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 29 2017 *)
LinearRecurrence[{6, -3, 1}, {1, 4, 22}, 30] (* M. Poyraz Torcuk, Nov 06 2021 *)
PROG
(PARI) my(x='x+O('x^50)); Vec((1-x)^2/(1-6*x+3*x^2-x^3)) \\ G. C. Greubel, Apr 29 2017
CROSSREFS
Cf. A000930 (3 X n floor), A049086 (4 X 3n floor), A236577, A236578.
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 29 2014
STATUS
approved
The number of tilings of a 6 X n floor with 1 X 3 trominoes.
+10
5
1, 1, 1, 6, 13, 22, 64, 155, 321, 783, 1888, 4233, 9912, 23494, 54177, 126019, 295681, 687690, 1600185, 3738332, 8712992, 20293761, 47337405, 110368563, 257206012, 599684007, 1398149988, 3259051800, 7597720649, 17712981963
OFFSET
0,4
COMMENTS
Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
LINKS
R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 21.
Index entries for linear recurrences with constant coefficients, signature (1,1,7,-1,-5,-10,-1,3,5,1,-1,-1).
FORMULA
G.f.: See the definition of g in the Maple code.
MAPLE
g := (1-x^3)^2*(-x^2+1-x^3)/ (-x^10+x^12+x^11+10*x^6-5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1) ;
taylor(%, x=0, 30) ;
gfun[seriestolist](%) ;
MATHEMATICA
CoefficientList[Series[(1 - x^3)^2*(-x^2 + 1 - x^3)/(-x^10 + x^12 + x^11 + 10*x^6 - 5*x^9 - 3*x^8 + x^7 + x^4 - 7*x^3 + 5*x^5 - x^2 - x + 1), {x, 0, 50}], x] (* G. C. Greubel, Apr 27 2017 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x^3)^2*(-x^2+1-x^3)/(-x^10+x^12+x^11+10*x^6 -5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1)) \\ G. C. Greubel, Apr 27 2017
CROSSREFS
Cf. A000930 (3Xn floor), A049086 (4X3n floor), A236576 - A236578.
Column k=3 of A250662.
Cf. A251073.
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 29 2014
STATUS
approved
Number triangle binomial(n+2k,3k).
+10
4
1, 1, 1, 1, 4, 1, 1, 10, 7, 1, 1, 20, 28, 10, 1, 1, 35, 84, 55, 13, 1, 1, 56, 210, 220, 91, 16, 1, 1, 84, 462, 715, 455, 136, 19, 1, 1, 120, 924, 2002, 1820, 816, 190, 22, 1, 1, 165, 1716, 5005, 6188, 3876, 1330, 253, 25, 1, 1, 220, 3003, 11440, 18564, 15504, 7315, 2024
OFFSET
0,5
COMMENTS
Riordan array (1/(1-x),x/(1-x)^3).
Inverse array is A109956. Row sums are A052544.
Diagonal sums are A034943(n+1).
FORMULA
Number triangle T(n, k) = binomial(n+2k, 3k).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k) + T(n-1,k-1). - Philippe Deléham, Feb 18 2012
G.f.: (1-x)^2/((1-x)^3-y*x). - Philippe Deléham, Feb 18 2012
Sum_{k, 0<=k<=n} T(n,k)*x^k = A185963(n), A000012(n), A052544(n), A049086(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Feb 18 2012
EXAMPLE
Rows begin
1;
1,1;
1,4,1;
1,10,7,1;
1,20,28,10,1;
1,35,84,55,13,1;
PROG
(PARI) tabl(nn) = {my(m = matrix(nn, nn, n, k, if (n<k, 0, binomial(n+2*k-3, 3*k-3)))); for (n=1, nn, for (k=1, n, print1(m[n, k], ", "); ); print(); ); } \\ Michel Marcus, Nov 20 2015
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 06 2005
STATUS
approved
The number of tilings of a 7 X (3n) floor with 1 X 3 trominoes.
+10
4
1, 9, 155, 2861, 52817, 972557, 17892281, 329097125, 6052932495, 111328274273, 2047599783121, 37660384283749, 692666924307063, 12739845501187821, 234317040993180833, 4309665744385061493, 79265335342431559977
OFFSET
0,2
COMMENTS
Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
LINKS
R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 22.
FORMULA
G.f.: p(x)/q(x) with polynomials p and q defined in the Maple code.
MAPLE
p := (x-1)^2*(-x^15 +14*x^14 -104*x^13 +527*x^12 -1971*x^11 +5573*x^10 -11973*x^9 +19465*x^8 -23695*x^7 +21166*x^6 -13512*x^5 +5915*x^4 -1685*x^3 +291*x^2 -27*x+1) ;
q := -17*x^17 +293180*x^8 -236178*x^7 +142400*x^6 -62621*x^5 +19420*x^4 -4062*x^3 +533*x^2 -38*x +x^18 +1 +151*x^16 -946*x^15 +4558*x^14 -17135*x^13 +50164*x^12 -114198*x^11 +202080*x^10 -277277*x^9 ;
taylor(p/q, x=0, 30) ;
gfun[seriestolist](%) ;
CROSSREFS
Cf. A000930 (3Xn floor), A049086 (4X3n floor), A236576, A236577.
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Jan 29 2014
STATUS
approved

Search completed in 0.013 seconds