[go: up one dir, main page]

login
Search: a236578 -id:a236578
     Sort: relevance | references | number | modified | created      Format: long | short | data
The number of tilings of a 5 X (3n) floor with 1 X 3 trominoes.
+10
5
1, 4, 22, 121, 664, 3643, 19987, 109657, 601624, 3300760, 18109345, 99355414, 545105209, 2990674357, 16408085929, 90021597712, 493896002842, 2709719309845, 14866649448256, 81564634762843, 447497579542135
OFFSET
0,2
COMMENTS
Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
FORMULA
G.f.: (1-x)^2/(1-6*x+3*x^2-x^3).
a(n) = 6*a(n-1) - 3*a(n-2) + a(n-3). - M. Poyraz Torcuk, Oct 24 2021
MAPLE
g := (1-x)^2/(1-6*x+3*x^2-x^3) ;
taylor(%, x=0, 30) ;
gfun[seriestolist](%) ;
MATHEMATICA
CoefficientList[Series[(1 - x)^2/(1 - 6 x + 3 x^2 - x^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 29 2017 *)
LinearRecurrence[{6, -3, 1}, {1, 4, 22}, 30] (* M. Poyraz Torcuk, Nov 06 2021 *)
PROG
(PARI) my(x='x+O('x^50)); Vec((1-x)^2/(1-6*x+3*x^2-x^3)) \\ G. C. Greubel, Apr 29 2017
CROSSREFS
Cf. A000930 (3 X n floor), A049086 (4 X 3n floor), A236577, A236578.
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 29 2014
STATUS
approved
The number of tilings of a 6 X n floor with 1 X 3 trominoes.
+10
5
1, 1, 1, 6, 13, 22, 64, 155, 321, 783, 1888, 4233, 9912, 23494, 54177, 126019, 295681, 687690, 1600185, 3738332, 8712992, 20293761, 47337405, 110368563, 257206012, 599684007, 1398149988, 3259051800, 7597720649, 17712981963
OFFSET
0,4
COMMENTS
Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
LINKS
R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 21.
Index entries for linear recurrences with constant coefficients, signature (1,1,7,-1,-5,-10,-1,3,5,1,-1,-1).
FORMULA
G.f.: See the definition of g in the Maple code.
MAPLE
g := (1-x^3)^2*(-x^2+1-x^3)/ (-x^10+x^12+x^11+10*x^6-5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1) ;
taylor(%, x=0, 30) ;
gfun[seriestolist](%) ;
MATHEMATICA
CoefficientList[Series[(1 - x^3)^2*(-x^2 + 1 - x^3)/(-x^10 + x^12 + x^11 + 10*x^6 - 5*x^9 - 3*x^8 + x^7 + x^4 - 7*x^3 + 5*x^5 - x^2 - x + 1), {x, 0, 50}], x] (* G. C. Greubel, Apr 27 2017 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x^3)^2*(-x^2+1-x^3)/(-x^10+x^12+x^11+10*x^6 -5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1)) \\ G. C. Greubel, Apr 27 2017
CROSSREFS
Cf. A000930 (3Xn floor), A049086 (4X3n floor), A236576 - A236578.
Column k=3 of A250662.
Cf. A251073.
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 29 2014
STATUS
approved
Number of tilings of a 7 X 3n rectangle with right trominoes.
+10
4
1, 0, 520, 22656, 1795360, 115363072, 7876120608, 527256809600, 35522814546496, 2388257605782016, 160678147466414272, 10807663334085120512, 727010169682181839360, 48903265220016072792320, 3289569236212332037229184, 221278350342281369716796672
OFFSET
0,3
COMMENTS
See A351322 for algorithm.
This is the Hadamard sum of the following 4 sequences: 0, 0,0,0, 158208,.. (tilings which have both vertical and horizontal faults), 0,0,480,6144, 125952 ... (tilings which have horizontal faults but no vertical faults), 00,0,0,112192,.. (tilings which have vertical but no horizontal faults), 1, 0,40, 16512, 1399008 ,... (tilings which have neither horizontal nor vertical faults). - R. J. Mathar, Dec 08 2022
FORMULA
G.f.: (1 - 22*x - 1831*x^2 - 29454*x^3 - 270630*x^4 - 2070388*x^5 - 12125943*x^6 - 48147976*x^7 - 151548064*x^8 - 417242784*x^9 - 423562924*x^10 + 586224672*x^11 + 915719344*x^12 + 349980800*x^13 + 371621248*x^14 - 6541312*x^15 - 9691136*x^16 + 589824*x^17)/(1 - 22*x - 2351*x^2 - 40670*x^3 - 345038*x^4 - 3522884*x^5 - 28528327*x^6 - 145350120*x^7 - 623982088*x^8 - 2110011040*x^9 - 1354478796*x^10 + 9281598624*x^11 + 15001687984*x^12 + 3456230016*x^13 - 3194643904*x^14 - 1637793792*x^15 - 575934464*x^16 + 65175552*x^17).
a(n) = 22*a(n-1) + 2351*a(n-2) + 40670*a(n-3) + 345038*a(n-4) + 3522884*a(n-5) + 28528327*a(n-6) + 145350120*a(n-7) + 623982088*a(n-8) + 2110011040*a(n-9) + 1354478796*a(n-10) - 9281598624*a(n-11) - 15001687984*a(n-12) - 3456230016*a(n-13) + 3194643904*a(n-14) + 1637793792*a(n-15) + 575934464*a(n-16) - 65175552*a(n-17) for n>16.
CROSSREFS
Cf. A077957, A000079, A046984, A084478, A351322, A351323, A236578 (straight trominoes), A233343 (mixed trominoes).
KEYWORD
nonn,easy
AUTHOR
Gerhard Kirchner, Feb 21 2022
STATUS
approved

Search completed in 0.006 seconds