[go: up one dir, main page]

login
Search: a034494 -id:a034494
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 7^n + 1.
+10
49
2, 8, 50, 344, 2402, 16808, 117650, 823544, 5764802, 40353608, 282475250, 1977326744, 13841287202, 96889010408, 678223072850, 4747561509944, 33232930569602, 232630513987208, 1628413597910450, 11398895185373144
OFFSET
0,1
FORMULA
a(n) = 7*a(n-1) - 6.
a(n) = 8*a(n-1) - 7*a(n-2).
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-7*x).
E.g.f.: exp(x) + exp(7*x). (End)
a(n) = 2*A034494(n). - G. C. Greubel, Mar 11 2023
MATHEMATICA
7^Range[0, 30] +1
LinearRecurrence[{8, -7}, {2, 8}, 20] (* Harvey P. Dale, Aug 18 2018 *)
PROG
(Sage) [sigma(7, n) for n in range(0, 20)] # Zerinvary Lajos, Jun 04 2009
(PARI) a(n)=7^n+1 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [7^n +1: n in [0..30]]; // G. C. Greubel, Mar 11 2023
KEYWORD
easy,nonn
STATUS
approved
Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)
+10
19
1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
OFFSET
0,3
COMMENTS
Suppose that p=p(0)*x^n+p(1)*x^(n-1)+...+p(n-1)*x+p(n) is a polynomial of positive degree and that Q is a sequence of polynomials: q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k), for k=0,1,2,... The Q-downstep of p is the polynomial given by D(p)=p(0)*q(n-1,x)+p(1)*q(n-2,x)+...+p(n-1)*q(0,x)+p(n).
Since degree(D(p))<degree(p), the result of n applications of D is a constant, which we call the Q-residue of p. If p is a constant to begin with, we define D(p)=p.
Example: let p(x)=2*x^3+3*x^2+4*x+5 and q(k,x)=(x+1)^k.
D(p)=2(x+1)^2+3(x+1)+4(1)+5=2x^2+7x+14
D(D(p))=2(x+1)+7(1)+14=2x+23
D(D(D(p)))=2(1)+23=25;
the Q-residue of p is 25.
We may regard the sequence Q of polynomials as the triangular array formed by coefficients:
t(0,0)
t(1,0)....t(1,1)
t(2,0)....t(2,1)....t(2,2)
t(3,0)....t(3,1)....t(3,2)....t(3,3)
and regard p as the vector (p(0),p(1),...,p(n)). If P is a sequence of polynomials [or triangular array having (row n)=(p(0),p(1),...,p(n))], then the Q-residues of the polynomials form a numerical sequence.
Following are examples in which Q is the triangle given by t(i,j)=1 for 0<=i<=j:
Q.....P...................Q-residue of P
1.....1...................A000079, 2^n
1....(x+1)^n..............A007051, (1+3^n)/2
1....(x+2)^n..............A034478, (1+5^n)/2
1....(x+3)^n..............A034494, (1+7^n)/2
1....(2x+1)^n.............A007582
1....(3x+1)^n.............A081186
1....(2x+3)^n.............A081342
1....(3x+2)^n.............A081336
1.....A040310.............A193649
1....(x+1)^n+(x-1)^n)/2...A122983
1....(x+2)(x+1)^(n-1).....A057198
1....(1,2,3,4,...,n)......A002064
1....(1,1,2,3,4,...,n)....A048495
1....(n,n+1,...,2n).......A087323
1....(n+1,n+2,...,2n+1)...A099035
1....p(n,k)=(2^(n-k))*3^k.A085350
1....p(n,k)=(3^(n-k))*2^k.A090040
1....A008288 (Delannoy)...A193653
1....A054142..............A101265
1....cyclotomic...........A193650
1....(x+1)(x+2)...(x+n)...A193651
1....A114525..............A193662
More examples:
Q...........P.............Q-residue of P
(x+1)^n...(x+1)^n.........A000110, Bell numbers
(x+1)^n...(x+2)^n.........A126390
(x+2)^n...(x+1)^n.........A028361
(x+2)^n...(x+2)^n.........A126443
(x+1)^n.....1.............A005001
(x+2)^n.....1.............A193660
A094727.....1.............A193657
(k+1).....(k+1)...........A001906 (even-ind. Fib. nos.)
(k+1).....(x+1)^n.........A112091
(x+1)^n...(k+1)...........A029761
(k+1)......A049310........A193663
(In these last four, (k+1) represents the triangle t(n,k)=k+1, 0<=k<=n.)
A051162...(x+1)^n.........A193658
A094727...(x+1)^n.........A193659
A049310...(x+1)^n.........A193664
Changing the notation slightly leads to the Mathematica program below and the following formulation for the Q-downstep of p: first, write t(n,k) as q(n,k). Define r(k)=Sum{q(k-1,i)*r(k-1-i) : i=0,1,...,k-1} Then row n of D(p) is given by v(n)=Sum{p(n,k)*r(n-k) : k=0,1,...,n}.
FORMULA
Conjecture: G.f.: -(1+x)*(2*x-1) / ( (x-1)*(4*x^2+x-1) ). - R. J. Mathar, Feb 19 2015
EXAMPLE
First five rows of Q, coefficients of Fibonacci polynomials (A049310):
1
1...0
1...0...1
1...0...2...0
1...0...3...0...1
To obtain a(4)=15, downstep four times:
D(x^4+3*x^2+1)=(x^3+x^2+x+1)+3(x+1)+1: (1,1,4,5) [coefficients]
DD(x^4+3*x^2+1)=D(1,1,4,5)=(1,2,11)
DDD(x^4+3*x^2+1)=D(1,2,11)=(1,14)
DDDD(x^4+3*x^2+1)=D(1,14)=15.
MATHEMATICA
q[n_, k_] := 1;
r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
f[n_, x_] := Fibonacci[n + 1, x];
p[n_, k_] := Coefficient[f[n, x], x, k]; (* A049310 *)
v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
Table[v[n], {n, 0, 24}] (* A193649 *)
TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
Table[r[k], {k, 0, 8}] (* 2^k *)
TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]
CROSSREFS
Cf. A192872 (polynomial reduction), A193091 (polynomial augmentation), A193722 (the upstep operation and fusion of polynomial sequences or triangular arrays).
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 02 2011
STATUS
approved
T(n,k)=Number of nXk 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.
+10
17
1, 1, 1, 2, 4, 2, 5, 25, 25, 5, 14, 172, 401, 172, 14, 41, 1201, 6548, 6548, 1201, 41, 122, 8404, 107042, 250031, 107042, 8404, 122, 365, 58825, 1749965, 9548295, 9548295, 1749965, 58825, 365, 1094, 411772, 28609241, 364637102, 851787199, 364637102
OFFSET
1,4
COMMENTS
Number of colorings of the grid graph P_n X P_k using a maximum of 4 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..496 (terms 1..180 from R. H. Hardin)
Eric Weisstein's World of Mathematics, Grid Graph
Eric Weisstein's World of Mathematics, Vertex Coloring
Wikipedia, Graph Coloring
EXAMPLE
Table starts
....1........1............2...............5..................14
....1........4...........25.............172................1201
....2.......25..........401............6548..............107042
....5......172.........6548..........250031.............9548295
...14.....1201.......107042.........9548295...........851787199
...41.....8404......1749965.......364637102.........75987485516
..122....58825.....28609241.....13925032958.......6778819400772
..365...411772....467717288....531779578441.....604736581320925
.1094..2882401...7646461682..20307996787865...53948385378521909
.3281.20176804.125007943505.775536991678112.4812720805166620356
...
Some solutions with all values from 0 to 3 for n=6 k=4
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0
..0..1..2..1....0..1..0..1....0..1..0..1....0..1..0..2....0..1..0..1
..1..2..0..3....2..0..3..0....2..0..1..0....1..2..1..3....1..2..3..0
..2..0..2..0....1..3..0..2....3..2..0..2....0..3..0..2....3..1..2..3
..3..2..0..1....3..2..1..0....0..3..2..1....3..1..3..0....1..3..1..0
CROSSREFS
Columns 1-7 are A007051(n-2), A034494(n-1), A198710, A198711, A198712, A198713, A198714.
Main diagonal is A198709.
Cf. A207997 (3 colorings), A222444 (labeled 4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 29 2011
STATUS
approved
Expansion of exp(3*x)*cosh(3*x).
+10
13
1, 3, 18, 108, 648, 3888, 23328, 139968, 839808, 5038848, 30233088, 181398528, 1088391168, 6530347008, 39182082048, 235092492288, 1410554953728, 8463329722368, 50779978334208, 304679870005248, 1828079220031488, 10968475320188928, 65810851921133568
OFFSET
0,2
COMMENTS
Binomial transform of A081340. 3rd binomial transform of (1,0,9,0,81,0,729,0,...).
For m > 1, n > 0, A166469(A002110(m)*a(n)) = (n+1)*A000045(m+1). For n > 0, A166469(a(n)) = 2n. - Matthew Vandermast, Nov 05 2009
Number of compositions of even natural numbers in n parts <= 5. - Adi Dani, May 29 2011
FORMULA
a(0)=1, a(n) = 6^n/2, n > 0.
G.f.: (1-3*x)/(1-6*x).
E.g.f.: exp(3*x)*cosh(3*x).
a(n) = A000244(n)*A011782(n). - Philippe Deléham, Dec 01 2008
a(n) = ((3+sqrt(9))^n + (3-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
a(n) = Sum_{k=0..n} A134309(n,k)*3^k = Sum_{k=0..n} A055372(n,k)*2^k. - Philippe Deléham, Feb 04 2012
From Sergei N. Gladkovskii, Jul 19 2012: (Start)
a(n) = ((8*n-4)*a(n-1) - 12*(n-2)*a(n-2))/n, a(0)=1, a(1)=3.
E.g.f. (exp(6*x) + 1)/2 = 1 + 3*x/(G(0) - 6*x) where G(k) = 6*x + 1 + k - 6*x*(k+1)/G(k+1) (continued fraction, Euler's 1st kind, 1-step). (End)
"INVERT" transform of A000244. - Alois P. Heinz, Sep 22 2017
EXAMPLE
From Adi Dani, May 29 2011: (Start)
a(2)=18: there are 18 compositions of even natural numbers into 2 parts <= 5:
for 0: (0,0);
for 2: (0,2),(2,0),(1,1);
for 4: (0,4),(4,0),(1,3),(3,1),(2,2);
for 6: (1,5),(5,1),(2,4),(4,2),(3,3);
for 8: (3,5),(5,3),(4,4);
for 10: (5,5). (End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(3^j*a(n-j), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 22 2017
MATHEMATICA
Table[Ceiling[1/2(6^n)], {n, 0, 25}]
CoefficientList[Series[-(-1 + 3 x)/(1 - 6 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 21 2011 *)
Join[{1}, NestList[6#&, 3, 30]] (* Harvey P. Dale, May 25 2019 *)
PROG
(PARI) x='x+O('x^66); /* that many terms */
Vec((1-3*x)/(1-6*x)) /* show terms */ /* Joerg Arndt, May 29 2011 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 18 2003
EXTENSIONS
Typo in A-number fixed by Klaus Brockhaus, Apr 04 2010
STATUS
approved
T(n,k)=Number of 0..3 colorings of an nx(k+1) array circular in the k+1 direction with new values 0..3 introduced in row major order
+10
12
1, 1, 4, 4, 11, 25, 10, 111, 121, 172, 31, 670, 3502, 1331, 1201, 91, 4994, 44900, 110985, 14641, 8404, 274, 34041, 825105, 3008980, 3517864, 161051, 58825, 820, 241021, 12777541, 136579852, 201647240, 111505491, 1771561, 411772, 2461, 1678940
OFFSET
1,3
COMMENTS
Table starts
....1.....1.......4........10..........31............91.............274
....4....11.....111.......670........4994.........34041..........241021
...25...121....3502.....44900......825105......12777541.......214404272
..172..1331..110985...3008980...136579852....4797577911....191154162535
.1201.14641.3517864.201647240.22615881851.1801391900581.170522196557894
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 8*a(n-1) -7*a(n-2)
k=2: a(n) = 11*a(n-1)
k=3: a(n) = 35*a(n-1) -107*a(n-2) +73*a(n-3)
k=4: a(n) = 68*a(n-1) -66*a(n-2)
k=5: a(n) = 200*a(n-1) -5769*a(n-2) +11744*a(n-3) +43057*a(n-4) -89856*a(n-5) +40625*a(n-6)
k=6: a(n) = 416*a(n-1) -15454*a(n-2) +89758*a(n-3) +90848*a(n-4) -438718*a(n-5) +62801*a(n-6)
k=7: (order 15)
Empirical for row n:
n=1: a(k)=3*a(k-1)+a(k-2)-3*a(k-3)
n=2: a(k)=4*a(k-1)+22*a(k-2)-4*a(k-3)-21*a(k-4)
n=3: a(k)=11*a(k-1)+123*a(k-2)-509*a(k-3)-1615*a(k-4)+7137*a(k-5)-19*a(k-6)-20571*a(k-7)+13176*a(k-8)+13932*a(k-9)-11664*a(k-10)
n=4: (order 26)
n=5: (order 71)
EXAMPLE
Some solutions for n=4 k=1
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..1..0....1..2....2..3....1..0....1..0....1..0....1..2....1..0....1..0....1..2
..0..1....0..1....3..1....0..1....2..3....2..1....3..0....0..2....2..3....3..1
..1..2....1..0....1..0....1..0....3..2....3..0....0..1....1..3....3..1....0..2
CROSSREFS
Column 1 is A034494(n-1)
Column 2 is A001020(n-1)
Row 1 is A006342(n-1)
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jul 04 2012
STATUS
approved
a(n) = (8^n + 2^n)/2.
+10
11
1, 5, 34, 260, 2056, 16400, 131104, 1048640, 8388736, 67109120, 536871424, 4294968320, 34359740416, 274877911040, 2199023263744, 17592186060800, 140737488388096, 1125899906908160, 9007199254872064, 72057594038190080, 576460752303947776, 4611686018428436480
OFFSET
0,2
COMMENTS
Binomial transform of A034494.
5th binomial transform of {1, 0, 9, 0, 81, 0, 729, 0, ...}.
FORMULA
a(n) = (8^n + 2^n)/2.
a(n) = 10*a(n-1) - 16*a(n-2), a(0)=1, a(1)=5.
G.f.: (1-5*x)/((1-2*x)*(1-8*x)).
E.g.f.: exp(5*x)*cosh(3*x).
a(n) = ((5+sqrt(9))^n + (5-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
a(n) = A074603(n)/2. - Michel Marcus, Jan 09 2020
MAPLE
seq( (8^n + 2^n)/2, n=0..30); # G. C. Greubel, Jan 08 2020
MATHEMATICA
Table[(8^n + 2^n)/2, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Jun 12 2011 *)
PROG
(Magma) [(8^n+2^n)/2: n in [0..30]]; // Vincenzo Librandi, Jun 13 2011
(PARI) a(n)=(8^n+2^n)/2 \\ Charles R Greathouse IV, Sep 28 2015
(Sage) [(8^n + 2^n)/2 for n in (0..30)] # G. C. Greubel, Jan 08 2020
(GAP) List([0..30], n-> (8^n + 2^n)/2); # G. C. Greubel, Jan 08 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 18 2003
STATUS
approved
a(n) = 2^(n-1)*( 2^n + (-1)^n ).
+10
10
1, 1, 10, 28, 136, 496, 2080, 8128, 32896, 130816, 524800, 2096128, 8390656, 33550336, 134225920, 536854528, 2147516416, 8589869056, 34359869440, 137438691328, 549756338176, 2199022206976, 8796095119360, 35184367894528, 140737496743936, 562949936644096, 2251799847239680
OFFSET
0,3
COMMENTS
Binomial transform of expansion of cosh(3*x), the aerated version of A001019, 1,0,9,0,81,0,729,... - Paul Barry, Apr 05 2003
Alternatively: start with the fraction 1/1, take the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 9 times the bottom to get the new top. The limit of the sequence of fractions used to generate this sequence is sqrt(9). - Cino Hilliard, Sep 25 2005
This sequence also gives the number of ordered pairs of subsets (A, B) of {1, 2, ..., n} such that |A u B| is even. (Here "u" stands for the set-theoretic union.) The special case n = 13 can be found as in CRUX Problem 3257. - Walther Janous (walther.janous(AT)tirol.com), Mar 01 2008
For n > 0, a(n) is term (1,1) in the n-th power of the 2 X 2 matrix [1,3; 3,1]. - Gary W. Adamson, Aug 06 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 9 types of other natural numbers. - Milan Janjic, Aug 13 2010
a(n) = ((1+3)^n+(1-3)^n)/2. In general, if b(0),b(1),... is the k-th binomial transform of the sequence ((3^n+(-3)^n)/2), then b(n) = ((k+3)^n+(k-3)^n)/2. More generally, if b(0),b(1),... is the k-th binomial transform of the sequence ((m^n+(-m)^n)/2), then b(n) = ((k+m)^n+(k-m)^n)/2. See A034494, A081340-A081342, A034659. - Charlie Marion, Jun 25 2011
Pisano period lengths: 1, 1, 1, 1, 4, 1, 6, 1, 1, 4, 5, 1, 12, 6, 4, 1, 8, 1, 9, 4, ... - R. J. Mathar, Aug 10 2012
Starting with offset 1 the sequence is the INVERT transform of (1, 9, 9, 9, ...). - Gary W. Adamson, Aug 06 2016
REFERENCES
John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
M. Gardner, Riddles of Sphinx, M.A.A., 1987, p. 145.
LINKS
R. K. Guy, s-Additive sequences, Preprint, 1994. (Annotated scanned copy)
Bill Sands, Problem 3257, Crux Math. 33 (2007), No.5, p. 298.
FORMULA
From Paul Barry, Mar 01 2003: (Start)
a(n) = 2*a(n-1) + 8*a(n-2), a(0)=a(1)=1.
a(n) = (4^n + (-2)^n)/2.
G.f.: (1-x)/((1+2*x)*(1-4*x)). (End)
From Paul Barry, Apr 05 2003: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*9^k.
E.g.f. exp(x)*cosh(3*x). (End)
a(n) = (A078008(n) + A001045(n+1))*2^(n-1) = A014551(n)*2^(n-1). - Paul Barry, Feb 12 2004
Given a(0)=1, b(0)=1 then for i=1, 2, ..., a(i)/b(i) = (a(i-1) + 9*b(i-1)) / (a(i-1) + b(i-1)). - Cino Hilliard, Sep 25 2005
a(n) = Sum_{k=0..n} A098158(n,k)*9^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = ((1+sqrt(9))^n + (1-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
If p[1]=1, and p[i]=9, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(9*k-1)/(x*(9*k+8) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013
MAPLE
A003665:=n->2^(n-1)*( 2^n + (-1)^n ): seq(A003665(n), n=0..30); # Wesley Ivan Hurt, Apr 28 2017
MATHEMATICA
CoefficientList[Series[(1+8x)/(1-2x-8x^2), {x, 0, 30}], x] (* or *)
LinearRecurrence[{2, 8}, {1, 1}, 30] (* Robert G. Wilson v, Sep 18 2013 *)
PROG
(PARI) a(n)=2^(n-1)*( 2^n + (-1)^n );
(Magma) [2^(n-1)*( 2^n + (-1)^n ): n in [0..30]]; // Vincenzo Librandi, Aug 19 2011
(Sage) [2^(n-1)*(2^n +(-1)^n) for n in (0..30)] # G. C. Greubel, Aug 02 2019
(GAP) List([0..30], n-> 2^(n-1)*(2^n +(-1)^n)); # G. C. Greubel, Aug 02 2019
KEYWORD
nonn,easy
EXTENSIONS
Entry revised by N. J. A. Sloane, Nov 22 2006
STATUS
approved
T(n,k)=Number of nXk 0..5 arrays with no element equal to another within a city block distance of two, and new values 0..5 introduced in row major order
+10
7
1, 1, 1, 1, 1, 1, 2, 4, 4, 2, 5, 25, 26, 25, 5, 15, 172, 206, 206, 172, 15, 51, 1201, 1592, 1931, 1592, 1201, 51, 187, 8404, 12428, 16784, 16784, 12428, 8404, 187, 715, 58825, 96632, 151630, 170796, 151630, 96632, 58825, 715, 2795, 411772, 752552, 1343560
OFFSET
1,7
COMMENTS
Table starts
...1.....1......1........2.........5.........15..........51..........187
...1.....1......4.......25.......172.......1201........8404........58825
...1.....4.....26......206......1592......12428.......96632.......752552
...2....25....206.....1931.....16784.....151630.....1343560.....12046648
...5...172...1592....16784....170796....1787258....18574298....193499878
..15..1201..12428...151630...1787258...21983256...268956972...3301485294
..51..8404..96632..1343560..18574298..268956972..3889732730..56960076094
.187.58825.752552.12046648.193499878.3301485294.56960076094.998388746378
LINKS
EXAMPLE
Some solutions for n=4 k=3
..0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2
..2..3..0....2..3..4....2..3..4....3..4..5....3..4..5....2..3..0....2..3..4
..1..4..5....1..0..5....4..5..1....5..0..1....1..0..3....4..5..1....1..5..0
..0..2..1....3..2..1....1..2..0....4..3..2....2..5..1....0..2..3....0..2..3
CROSSREFS
Column 1 is A007581(n-3)
Column 2 is A034494(n-2)
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 07 2012
STATUS
approved
a(n) = (7^n - 1)/2.
+10
3
0, 3, 24, 171, 1200, 8403, 58824, 411771, 2882400, 20176803, 141237624, 988663371, 6920643600, 48444505203, 339111536424, 2373780754971, 16616465284800, 116315256993603, 814206798955224, 5699447592686571, 39896133148806000
OFFSET
0,2
COMMENTS
Number of compositions of odd natural numbers into n parts < 7. - Adi Dani, Jun 11 2011
FORMULA
a(n) = A034494(n) - 1.
a(n) = 8*a(n-1) - 7*a(n-2), n >= 2.
a(n) = right term in M^n * [1,0], where M is the 2 X 2 matrix [4,3; 3,4].
From G. C. Greubel, Nov 11 2022: (Start)
G.f.: 3*x/((1-x)*(1-7*x)).
E.g.f.: (1/2)*(exp(7*x) - exp(x)). (End)
EXAMPLE
From Adi Dani, Jun 11 2011: (Start)
a(2)=24: there are 24 compositions of odd numbers into 2 parts < 7:
1: (0,1), (1,0);
3: (0,3), (3,0), (1,2), (2,1);
5: (0,5), (5,0), (1,4), (4,1), (2,3), (3,2);
7: (1,6), (6,1), (2,5), (5,2), (3,4), (4,3);
9: (3,6), (6,3), (4,5), (5,4);
11: (5,6),(6,5). (End)
a(4) = 1200 = A034494(4) - 1, where A034494(4) = 1201.
a(4) = 1200 = 8*a(3) - 7*a(2) = 8*171 - 7*24.
a(4) = 1200 = right term in M^n * [1,0] = [A034494(4), a(4)] = [1201, 1200].
MATHEMATICA
Table[1/2*(7^n - 1), {n, 0, 25}]
PROG
(Magma) [(7^n-1)/2: n in [0..25]]; // Vincenzo Librandi, Jun 11 2011
(PARI) a(n)=7^n\2 \\ Charles R Greathouse IV, Jun 11 2011
(SageMath) [(7^n-1)/2 for n in range(31)] # G. C. Greubel, Nov 11 2022
CROSSREFS
Cf. A034494.
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jun 30 2006
EXTENSIONS
Complete edit by Joerg Arndt, Jun 11 2011
STATUS
approved
a(n) = C(3,n) DELTA C(0,n).
+10
3
1, 1, 1, 4, 5, 1, 25, 33, 9, 1, 172, 238, 78, 13, 1, 1201, 1745, 667, 139, 17, 1, 8404, 12807, 5583, 1376, 216, 21, 1, 58825, 93841, 45822, 12950, 2429, 309, 25, 1, 411772, 686288, 370108, 117458, 25366, 3890, 418, 29, 1, 2882401, 5009889, 2951034, 1035834, 251583, 44607, 5823, 543, 33, 1
OFFSET
0,4
COMMENTS
Triangle [1,3,3,1,0,0,0,...] DELTA [1,0,0,0,...] with Deléham DELTA as in A084938.
First column is A034494(n-1). Row sums are A147725. A147724 = A147723*A007318.
LINKS
Indranil Ghosh, Rows 0..100, flattened
FORMULA
Riordan array ((1-7x+3x^2)/(1-8x+7x^2), x(1-4x)/(1-8x+7x^2).
G.f.: (1 - 7*x + 3*x^2)/(1 - 8*x + 7*x^2 - x*y + 4*x^2*y). - Philippe Deléham , Oct 29 2013
T(n,k) = 8*T(n-1,k) + T(n-1,k-1) - 7*T(n-2,k) - 4*T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 4, T(2,1) = 5, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham , Oct 29 2013
EXAMPLE
Triangle begins
1;
1, 1;
4, 5, 1;
25, 33, 9, 1;
172, 238, 78, 13, 1;
MATHEMATICA
nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - 7*x + 3*x^2)/(1 - 8*x + 7*x^2 - x*y + 4*x^2*y) , {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 10 2017 *)
CROSSREFS
Cf. A147721.
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Nov 11 2008
STATUS
approved

Search completed in 0.011 seconds