Displaying 1-10 of 21 results found.
Number of primes <= Fibonacci(Fibonacci(n)) = pi( A007570(n)).
+20
0
0, 0, 0, 0, 1, 3, 8, 51, 1329, 393790, 5670112879, 43416847208976911
EXAMPLE
a(7) = 51 because Fibonacci(7) = 13, Fibonacci(13) = 233 and there are 51 primes <= 233.
MATHEMATICA
PrimePi@# & /@ (Fibonacci@Fibonacci@# & /@ Range@10) (* Robert G. Wilson v, Feb 17 2009 *)
PROG
(XiCalc) Pi(Fib(Fib(n)));
(Magma) [0] cat [#PrimesUpTo(Fibonacci(Fibonacci(n))): n in [1..9]]; // Vincenzo Librandi, Aug 02 2015
EXTENSIONS
a(11) calculated using Kim Walisch's primecount and added by Amiram Eldar, Sep 03 2024
a(n) = L(L(n)), where L(n) are Lucas numbers A000032.
(Formerly M3315)
+10
9
3, 1, 4, 7, 29, 199, 5778, 1149851, 6643838879, 7639424778862807, 50755107359004694554823204, 387739824812222466915538827541705412334749, 19679776435706023589554719270187913247121278789615838446937339578603
REFERENCES
T. Koshy (2001), Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 511-516
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
L:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1, 1]:
a:= n-> L(L(n)):
MATHEMATICA
l[n_]:= l[n]= l[n-1] + l[n-2]; l[0]= 2; l[1]= 1; Table[l[l[n]], {n, 0, 12}]
PROG
(PARI) {lucas(n) = fibonacci(n+1) + fibonacci(n-1)};
for(n=0, 15, print1(lucas(lucas(n)), ", ")) \\ G. C. Greubel, Dec 21 2017
(SageMath) [lucas_number2(lucas_number2(n, 1, -1), 1, -1) for n in range(15)] # G. C. Greubel Nov 14 2022
EXTENSIONS
More terms from Mario Catalani (mario.catalani(AT)unito.it), Mar 14 2003
Offset changed Feb 28 2007
a(n) = F(F(n)) mod F(n), where F = Fibonacci = A000045.
+10
6
0, 0, 1, 2, 0, 5, 12, 5, 33, 5, 1, 0, 232, 233, 55, 5, 1596, 2563, 1, 5, 987, 10946, 28656, 0, 0, 75025, 189653, 89, 1, 6765, 1, 5, 6765, 1, 9227460, 0, 24157816, 1, 63245985, 5, 1, 267914275, 433494436, 4181, 1134896405, 1, 2971215072, 0, 7778741816, 75025
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
`if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
a:= n-> p(<<0|1>, <1|1>>, F(n)$2)[1, 2]:
seq(a(n), n=1..50);
MATHEMATICA
F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
p[M_, n_, k_] := Mod[#, k]& /@ If[n == 0, {{1, 0}, {0, 1}}, If[EvenQ[n], MatrixPower[p[M, n/2, k], 2], p[M, n - 1, k].M]];
a[n_] := p[{{0, 1}, {1, 1}}, F[n], F[n]][[1, 2]];
a(n) = F(F(n)) mod n, where F = Fibonacci = A000045.
+10
5
0, 1, 1, 2, 0, 3, 2, 2, 1, 5, 1, 0, 8, 13, 10, 2, 12, 15, 5, 10, 1, 1, 1, 0, 0, 25, 1, 2, 5, 15, 27, 2, 10, 33, 20, 0, 1, 1, 34, 10, 40, 21, 18, 2, 10, 1, 1, 0, 1, 25, 1, 2, 16, 21, 5, 26, 37, 1, 7, 0, 33, 27, 1, 2, 40, 21, 5, 2, 1, 15, 1, 0, 46, 1, 25, 2, 68
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
`if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
a:= n-> p(<<0|1>, <1|1>>, F(n), n)[1, 2]:
seq(a(n), n=1..80);
MATHEMATICA
F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
p[M_, n_, k_] := Mod[#, k]& /@ If[n == 0, {{1, 0}, {0, 1}}, If[EvenQ[n], MatrixPower[p[M, n/2, k], 2], p[M, n - 1, k].M]];
a[n_] := p[{{0, 1}, {1, 1}}, F[n], n][[1, 2]];
a(n) = F(F(F(n))), where F is a Fibonacci number ( A000045).
+10
4
0, 1, 1, 1, 1, 5, 10946, 2211236406303914545699412969744873993387956988653
COMMENTS
a(8) = 1695216512..7257812353 has 2288 decimal digits and a(9) = 3525796792..4659808333 has 1191833 decimal digits. - Alois P. Heinz, Nov 11 2015
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= n-> F(F(F(n))):
MATHEMATICA
F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2]; Table[ F[ F[ F[n] ] ], {n, 0, 10} ]
Table[Nest[Fibonacci, n, 3], {n, 0, 8}] (* Harvey P. Dale, Feb 09 2018 *)
Numbers n such that F(n) divides F(F(n)), where F(n) is a Fibonacci number.
+10
4
1, 2, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, 125, 144, 168, 180, 192, 216, 240, 288, 300, 324, 336, 360, 384, 432, 480, 504, 540, 552, 576, 600, 612, 625, 648, 660, 672, 684, 720, 768, 840, 864, 900, 960, 972, 1008, 1080, 1104, 1152, 1176, 1200, 1224, 1296, 1320
COMMENTS
It is known that for n > 2 Fibonacci(n) divides Fibonacci(m) if and only if n divides m. Therefore if the term "2" is omitted this is identical to A023172, which see for further information. - Stefan Steinerberger, Dec 20 2007
EXAMPLE
12 is a term because F(12) = 144 divides F(F(12)) = F(144) = 555565404224292694404015791808.
MAPLE
with(combinat): a:=proc(n) if type(fibonacci(fibonacci(n))/fibonacci(n), integer) then n else end if end proc: seq(a(n), n=1..40); # Emeric Deutsch, Aug 24 2007
CROSSREFS
Cf. A023172. Cf. also A000045 = Fibonacci(n), A007570 = F(F(n)), where F is a Fibonacci number, A023172 = numbers n such that n divides Fibonacci(n).
a(n) = F(F(F(n))) mod F(F(n)), where F = Fibonacci = A000045.
+10
4
0, 0, 0, 1, 0, 5, 232, 987, 1, 5, 1, 0, 2211236406303914545699412969744873993387956988652, 2211236406303914545699412969744873993387956988653, 139583862445
MAPLE
F:= proc(n) local r, M, p; r, M, p:=
<<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
do if irem(p, 2, 'p')=1 then r:=
`if`(nargs=1, r.M, r.M mod args[2]) fi;
if p=0 then break fi; M:=
`if`(nargs=1, M.M, M.M mod args[2])
od; r[1, 2]
end:
a:= n-> (h-> F(h$2))(F(F(n))):
seq(a(n), n=1..15);
a(n) = Fibonacci(Fibonacci(n+1) + 1).
(Formerly M0891)
+10
2
1, 1, 2, 3, 8, 34, 377, 17711, 9227465, 225851433717, 2880067194370816120, 898923707008479989274290850145, 3577855662560905981638959513147239988861837901112, 4444705723234237498833973519982908519933430818636409166351397897095281987215864
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
with(combinat, fibonacci): A005370 := n -> fibonacci(fibonacci(n+1)+1);
# second Maple program:
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= n-> F(F(n+1)+1):
PROG
(Magma) [Fibonacci(Fibonacci(n+1)+1): n in [0..17]]; // Vincenzo Librandi, Apr 20 2011
(SageMath) [fibonacci(fibonacci(n+1) +1) for n in range(15)] # G. C. Greubel, Nov 14 2022
EXTENSIONS
Description corrected by Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 17 2002
a(n) = tribonacci(Fibonacci(n)).
+10
2
0, 0, 0, 1, 1, 4, 24, 504, 66012, 181997601, 65720971788709, 65431225571591367370292, 23523635785731871586396890786299881280, 8419860898569880503664421048610377961601349941695806840602396
MAPLE
a:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^((<<0|1>, <1|1>>^n)[1, 2]))[1, 3]:
a(n) = Fibonacci(tribonacci(n)).
+10
2
0, 0, 1, 1, 1, 3, 13, 233, 46368, 701408733, 37889062373143906, 6161314747715278029583501626149, 818706854228831001753880637535093596811413714795418360007
MAPLE
a:= n-> (<<0|1>, <1|1>>^((<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3]))[1, 2]:
MATHEMATICA
Fibonacci/@LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 15] (* Harvey P. Dale, Jan 04 2013 *)
Search completed in 0.013 seconds
|