[go: up one dir, main page]

login
Search: a007570 -id:a007570
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of primes <= Fibonacci(Fibonacci(n)) = pi(A007570(n)).
+20
0
0, 0, 0, 0, 1, 3, 8, 51, 1329, 393790, 5670112879, 43416847208976911
OFFSET
0,6
FORMULA
a(n) = pi(Fibonacci(Fibonacci(n))) = A000720(A007570(n)).
a(n) = A054782(A000045(n)). - Amiram Eldar, Sep 03 2024
EXAMPLE
a(7) = 51 because Fibonacci(7) = 13, Fibonacci(13) = 233 and there are 51 primes <= 233.
MATHEMATICA
PrimePi@# & /@ (Fibonacci@Fibonacci@# & /@ Range@10) (* Robert G. Wilson v, Feb 17 2009 *)
PROG
(XiCalc) Pi(Fib(Fib(n)));
(Magma) [0] cat [#PrimesUpTo(Fibonacci(Fibonacci(n))): n in [1..9]]; // Vincenzo Librandi, Aug 02 2015
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Harry J. Smith, Dec 25 2008
EXTENSIONS
a(11) calculated using Kim Walisch's primecount and added by Amiram Eldar, Sep 03 2024
STATUS
approved
a(n) = L(L(n)), where L(n) are Lucas numbers A000032.
(Formerly M3315)
+10
9
3, 1, 4, 7, 29, 199, 5778, 1149851, 6643838879, 7639424778862807, 50755107359004694554823204, 387739824812222466915538827541705412334749, 19679776435706023589554719270187913247121278789615838446937339578603
OFFSET
0,1
REFERENCES
T. Koshy (2001), Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 511-516
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
L:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1, 1]:
a:= n-> L(L(n)):
seq(a(n), n=0..14); # Alois P. Heinz, Jun 01 2016
MATHEMATICA
l[n_]:= l[n]= l[n-1] + l[n-2]; l[0]= 2; l[1]= 1; Table[l[l[n]], {n, 0, 12}]
LucasL[LucasL[Range[0, 15]]] (* G. C. Greubel, Dec 21 2017 *)
PROG
(Magma) [ Lucas(Lucas(n)): n in [0..20]]; // Vincenzo Librandi, Apr 16 2011
(PARI) {lucas(n) = fibonacci(n+1) + fibonacci(n-1)};
for(n=0, 15, print1(lucas(lucas(n)), ", ")) \\ G. C. Greubel, Dec 21 2017
(SageMath) [lucas_number2(lucas_number2(n, 1, -1), 1, -1) for n in range(15)] # G. C. Greubel Nov 14 2022
CROSSREFS
KEYWORD
easy,nonn
EXTENSIONS
More terms from Mario Catalani (mario.catalani(AT)unito.it), Mar 14 2003
Offset changed Feb 28 2007
STATUS
approved
a(n) = F(F(n)) mod F(n), where F = Fibonacci = A000045.
+10
6
0, 0, 1, 2, 0, 5, 12, 5, 33, 5, 1, 0, 232, 233, 55, 5, 1596, 2563, 1, 5, 987, 10946, 28656, 0, 0, 75025, 189653, 89, 1, 6765, 1, 5, 6765, 1, 9227460, 0, 24157816, 1, 63245985, 5, 1, 267914275, 433494436, 4181, 1134896405, 1, 2971215072, 0, 7778741816, 75025
OFFSET
1,4
LINKS
FORMULA
a(n) = A007570(n) mod A000045(n).
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
`if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
a:= n-> p(<<0|1>, <1|1>>, F(n)$2)[1, 2]:
seq(a(n), n=1..50);
MATHEMATICA
F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
p[M_, n_, k_] := Mod[#, k]& /@ If[n == 0, {{1, 0}, {0, 1}}, If[EvenQ[n], MatrixPower[p[M, n/2, k], 2], p[M, n - 1, k].M]];
a[n_] := p[{{0, 1}, {1, 1}}, F[n], F[n]][[1, 2]];
Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 29 2024, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,look,changed
AUTHOR
Alois P. Heinz, Oct 09 2015
STATUS
approved
a(n) = F(F(n)) mod n, where F = Fibonacci = A000045.
+10
5
0, 1, 1, 2, 0, 3, 2, 2, 1, 5, 1, 0, 8, 13, 10, 2, 12, 15, 5, 10, 1, 1, 1, 0, 0, 25, 1, 2, 5, 15, 27, 2, 10, 33, 20, 0, 1, 1, 34, 10, 40, 21, 18, 2, 10, 1, 1, 0, 1, 25, 1, 2, 16, 21, 5, 26, 37, 1, 7, 0, 33, 27, 1, 2, 40, 21, 5, 2, 1, 15, 1, 0, 46, 1, 25, 2, 68
OFFSET
1,4
LINKS
FORMULA
a(n) = A007570(n) mod n.
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
`if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
a:= n-> p(<<0|1>, <1|1>>, F(n), n)[1, 2]:
seq(a(n), n=1..80);
MATHEMATICA
F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
p[M_, n_, k_] := Mod[#, k]& /@ If[n == 0, {{1, 0}, {0, 1}}, If[EvenQ[n], MatrixPower[p[M, n/2, k], 2], p[M, n - 1, k].M]];
a[n_] := p[{{0, 1}, {1, 1}}, F[n], n][[1, 2]];
Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Oct 29 2024, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,look,changed
AUTHOR
Alois P. Heinz, Oct 09 2015
STATUS
approved
a(n) = F(F(F(n))), where F is a Fibonacci number (A000045).
+10
4
0, 1, 1, 1, 1, 5, 10946, 2211236406303914545699412969744873993387956988653
OFFSET
0,6
COMMENTS
a(8) = 1695216512..7257812353 has 2288 decimal digits and a(9) = 3525796792..4659808333 has 1191833 decimal digits. - Alois P. Heinz, Nov 11 2015
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= n-> F(F(F(n))):
seq(a(n), n=0..7); # Alois P. Heinz, Nov 11 2015
MATHEMATICA
F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2]; Table[ F[ F[ F[n] ] ], {n, 0, 10} ]
Table[Nest[Fibonacci, n, 3], {n, 0, 8}] (* Harvey P. Dale, Feb 09 2018 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Nov 18 2000
EXTENSIONS
Offset corrected by Alois P. Heinz, Nov 11 2015
STATUS
approved
Numbers n such that F(n) divides F(F(n)), where F(n) is a Fibonacci number.
+10
4
1, 2, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, 125, 144, 168, 180, 192, 216, 240, 288, 300, 324, 336, 360, 384, 432, 480, 504, 540, 552, 576, 600, 612, 625, 648, 660, 672, 684, 720, 768, 840, 864, 900, 960, 972, 1008, 1080, 1104, 1152, 1176, 1200, 1224, 1296, 1320
OFFSET
1,2
COMMENTS
It is known that for n > 2 Fibonacci(n) divides Fibonacci(m) if and only if n divides m. Therefore if the term "2" is omitted this is identical to A023172, which see for further information. - Stefan Steinerberger, Dec 20 2007
EXAMPLE
12 is a term because F(12) = 144 divides F(F(12)) = F(144) = 555565404224292694404015791808.
MAPLE
with(combinat): a:=proc(n) if type(fibonacci(fibonacci(n))/fibonacci(n), integer) then n else end if end proc: seq(a(n), n=1..40); # Emeric Deutsch, Aug 24 2007
CROSSREFS
Cf. A023172. Cf. also A000045 = Fibonacci(n), A007570 = F(F(n)), where F is a Fibonacci number, A023172 = numbers n such that n divides Fibonacci(n).
Cf. A263101.
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, May 13 2007
EXTENSIONS
Edited by N. J. A. Sloane, Dec 22 2007
STATUS
approved
a(n) = F(F(F(n))) mod F(F(n)), where F = Fibonacci = A000045.
+10
4
0, 0, 0, 1, 0, 5, 232, 987, 1, 5, 1, 0, 2211236406303914545699412969744873993387956988652, 2211236406303914545699412969744873993387956988653, 139583862445
OFFSET
1,6
LINKS
FORMULA
a(n) = A058051(n) mod A007570(n).
MAPLE
F:= proc(n) local r, M, p; r, M, p:=
<<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
do if irem(p, 2, 'p')=1 then r:=
`if`(nargs=1, r.M, r.M mod args[2]) fi;
if p=0 then break fi; M:=
`if`(nargs=1, M.M, M.M mod args[2])
od; r[1, 2]
end:
a:= n-> (h-> F(h$2))(F(F(n))):
seq(a(n), n=1..15);
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 11 2016
STATUS
approved
a(n) = Fibonacci(Fibonacci(n+1) + 1).
(Formerly M0891)
+10
2
1, 1, 2, 3, 8, 34, 377, 17711, 9227465, 225851433717, 2880067194370816120, 898923707008479989274290850145, 3577855662560905981638959513147239988861837901112, 4444705723234237498833973519982908519933430818636409166351397897095281987215864
OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
MAPLE
with(combinat, fibonacci): A005370 := n -> fibonacci(fibonacci(n+1)+1);
# second Maple program:
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= n-> F(F(n+1)+1):
seq(a(n), n=1..14); # Alois P. Heinz, Nov 05 2015
MATHEMATICA
Table[Fibonacci[Fibonacci[n+1] +1], {n, 0, 14}] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
PROG
(Magma) [Fibonacci(Fibonacci(n+1)+1): n in [0..17]]; // Vincenzo Librandi, Apr 20 2011
(SageMath) [fibonacci(fibonacci(n+1) +1) for n in range(15)] # G. C. Greubel, Nov 14 2022
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from David W. Wilson
Description corrected by Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 17 2002
STATUS
approved
a(n) = tribonacci(Fibonacci(n)).
+10
2
0, 0, 0, 1, 1, 4, 24, 504, 66012, 181997601, 65720971788709, 65431225571591367370292, 23523635785731871586396890786299881280, 8419860898569880503664421048610377961601349941695806840602396
OFFSET
0,6
LINKS
FORMULA
a(n) = A000073(A000045(n)).
MAPLE
a:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^((<<0|1>, <1|1>>^n)[1, 2]))[1, 3]:
seq(a(n), n=0..14); # Alois P. Heinz, Aug 09 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 13 2005
STATUS
approved
a(n) = Fibonacci(tribonacci(n)).
+10
2
0, 0, 1, 1, 1, 3, 13, 233, 46368, 701408733, 37889062373143906, 6161314747715278029583501626149, 818706854228831001753880637535093596811413714795418360007
OFFSET
0,6
LINKS
FORMULA
a(n) = A000045(A000073(n)).
EXAMPLE
a(0) = Fibonacci(tribonacci(0)) = A000045(A000073(0)) = A000045(0) = 0.
a(1) = Fibonacci(tribonacci(1)) = A000045(A000073(1)) = A000045(0) = 0.
a(2) = Fibonacci(tribonacci(2)) = A000045(A000073(2)) = A000045(1) = 1.
a(3) = Fibonacci(tribonacci(3)) = A000045(A000073(3)) = A000045(1) = 1.
a(4) = Fibonacci(tribonacci(4)) = A000045(A000073(4)) = A000045(2) = 1.
a(5) = Fibonacci(tribonacci(5)) = A000045(A000073(5)) = A000045(4) = 3.
a(6) = Fibonacci(tribonacci(6)) = A000045(A000073(6)) = A000045(7) = 13.
a(7) = Fibonacci(tribonacci(7)) = A000045(A000073(7)) = A000045(13) = 233.
a(8) = A000045(A000073(8)) = A000045(24) = 46368.
a(9) = A000045(A000073(9)) = A000045(44) = 701408733.
a(10) = A000045(A000073(10)) = A000045(81) = 37889062373143906.
MAPLE
a:= n-> (<<0|1>, <1|1>>^((<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3]))[1, 2]:
seq(a(n), n=0..13); # Alois P. Heinz, Aug 09 2018
MATHEMATICA
Fibonacci/@LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 15] (* Harvey P. Dale, Jan 04 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 13 2005
STATUS
approved

Search completed in 0.013 seconds