[go: up one dir, main page]

login
A007570
a(n) = F(F(n)), where F is a Fibonacci number.
(Formerly M1537)
22
0, 1, 1, 1, 2, 5, 21, 233, 10946, 5702887, 139583862445, 1779979416004714189, 555565404224292694404015791808, 2211236406303914545699412969744873993387956988653, 2746979206949941983182302875628764119171817307595766156998135811615145905740557
OFFSET
0,5
COMMENTS
a(20) is approximately 2.830748520089124 * 10^1413, much too large to include even in the b-file. - Alonso del Arte, Apr 30 2020
Let M(0) denote the 2 X 2 identity matrix, and let M(1) = [[0, 1], [1, 1]]. Let M(n) = M(n-2) * M(n-1). Then a(n) is equal to both the (1, 2)-entry and the (2, 1)-entry of M(n). - John M. Campbell, Jul 02 2021
This is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Dec 06 2022
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..19 (terms n = 0..17 from T. D. Noe)
John M. Campbell, A Matrix-Based Recursion Relation for F_{F_n}, Fib. Quart., Vol. 60, No. 3 (2022), pp. 256-261.
Bakir Farhi, Summation of certain infinite Fibonacci related series, arXiv:1512.09033 [math.NT], 2015. See p. 6, eq. 2.9.
George Ledin, Jr., Problem H-147, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 6, No. 6 (1968), p. 352; Converging Fractions, Solution to Problem H-147 by David Zeitlin, ibid., Vol. 8, No. 4 (1970), pp. 387-389.
Edward A. Parberry, Two recursion relations for F(F(n)), Fib. Quart., Vol. 15, No. 2 (1977), p. 122 and p. 139.
Martin Stein, Algebraic independence results for reciprocal sums of Fibonacci and Lucas numbers, Dissertation, Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2012.
FORMULA
a(n+1)/a(n) ~ phi^(F(n-1)), with phi = (1 + sqrt(5))/2 = A001622. - Carmine Suriano, Jan 24 2011
Sum_{n>=1} 1/a(n) = 3.7520024260... is transcendental (Stein, 2012). - Amiram Eldar, Oct 30 2020
Sum_{n>=1} (-1)^(F(n)+1)*a(n-1)/(a(n)*a(n+1)) = 1/phi (A094214) (Farhi, 2015). - Amiram Eldar, Apr 07 2021
Limit_{n->oo} a(n+1)/a(n)^phi = 5^((phi-1)/2) = 1.6443475285..., where phi is the golden ratio (A001622) (Ledin, 1968) - Amiram Eldar, Feb 02 2022
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= n-> F(F(n)):
seq(a(n), n=0..14); # Alois P. Heinz, Oct 09 2015
MATHEMATICA
F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2]; Table[F[F[n]], {n, 0, 14}]
Fibonacci[Fibonacci[Range[0, 20]]] (* Harvey P. Dale, May 05 2012 *)
PROG
(Sage) [fibonacci(fibonacci(n)) for n in range(0, 14)] # Zerinvary Lajos, Nov 30 2009
(PARI) a(n)=fibonacci(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
(Scala) val fibo: LazyList[BigInt] = (0: BigInt) #:: (1: BigInt) #:: fibo.zip(fibo.tail).map { n => n._1 + n._2 }
val fiboLimited: LazyList[Int] = 0 #:: 1 #:: fiboLimited.zip(fiboLimited.tail).map { n => n._1 + n._2 } // Limited to 32-bit integers because that's the type for LazyList apply()
(0 to 19).map(n => fibo(fiboLimited(n))) // Alonso del Arte, Apr 30 2020
(Python)
from sympy import fibonacci
def a(n): return fibonacci(fibonacci(n))
print([a(n) for n in range(15)]) # Michael S. Branicky, Feb 02 2022
CROSSREFS
KEYWORD
nonn,nice,easy
EXTENSIONS
One more term from Harvey P. Dale, May 05 2012
STATUS
approved