[go: up one dir, main page]

login
Search: a006087 -id:a006087
     Sort: relevance | references | number | modified | created      Format: long | short | data
Unitary harmonic numbers (those for which the unitary harmonic mean is an integer).
(Formerly M4248)
+10
26
1, 6, 45, 60, 90, 420, 630, 1512, 3780, 5460, 7560, 8190, 9100, 15925, 16632, 27300, 31500, 40950, 46494, 51408, 55125, 64260, 66528, 81900, 87360, 95550, 143640, 163800, 172900, 185976, 232470, 257040, 330750, 332640, 464940, 565488, 598500, 646425, 661500
OFFSET
1,2
COMMENTS
Let ud(n) and usigma(n) be number of and sum of unitary divisors of n; then the unitary harmonic mean of the unitary divisors is H(n) = n*ud(n)/usigma(n). - Emeric Deutsch, Dec 22 2004
A103340(a(n)) = 1; A103339(a(n)) = A006087(n). - Reinhard Zumkeller, Mar 17 2012
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..290 (terms < 10^12)
Takeshi Goto, Upper Bounds for Unitary Perfect Numbers and Unitary Harmonic Numbers, Rocky Mountain Journal of Mathematics, Vol. 37, No. 5 (2007), pp. 1557-1576.
P. Hagis, Jr. and G. Lord, Unitary harmonic numbers, Proc. Amer. Math. Soc., 51 (1975), 1-7.
P. Hagis, Jr. and G. Lord, Unitary harmonic numbers, Proc. Amer. Math. Soc., 51 (1975), 1-7. (Annotated scanned copy)
Charles R. Wall, Unitary harmonic numbers, Fibonacci Quarterly, Vol. 21, No. 1 (1983), pp. 18-25.
FORMULA
If m is a term and omega(m) = A001221(m) = k, then m < 2^(k*2^k) (Goto, 2007). - Amiram Eldar, Jun 06 2020
MATHEMATICA
ud[n_] := 2^PrimeNu[n]; usigma[n_] := Sum[ If[ GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; uhm[n_] := n*ud[n]/usigma[n]; Reap[ Do[ If[ IntegerQ[uhm[n]], Print[n]; Sow[n]], {n, 1, 10^6}]][[2, 1]] (* Jean-François Alcover, May 16 2013 *)
PROG
(Haskell)
a006086 n = a006086_list !! (n-1)
a006086_list = filter ((== 1) . a103340) [1..]
-- Reinhard Zumkeller, Mar 17 2012
(PARI) udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
isok(n) = my(v=udivs(n)); denominator(n*#v/vecsum(v))==1; \\ Michel Marcus, May 07 2017
(PARI) is(n, f=factor(n))=(n<<(#f~))%sumdivmult([n, f], d, if(gcd(d, n/d)==1, d))==0 \\ Charles R Greathouse IV, Nov 05 2021
(PARI) list(lim)=my(v=List()); forfactored(n=1, lim\1, if((n[1]<<omega(n))%sumdivmult(n, d, if(gcd(d, n[1]/d)==1, d))==0, listput(v, n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 05 2021
CROSSREFS
See A006087 for more info.
KEYWORD
nonn,nice
EXTENSIONS
More terms from Emeric Deutsch, Dec 22 2004
STATUS
approved
Numerator of the unitary harmonic mean (i.e., the harmonic mean of the unitary divisors) of the positive integer n.
+10
10
1, 4, 3, 8, 5, 2, 7, 16, 9, 20, 11, 12, 13, 7, 5, 32, 17, 12, 19, 8, 21, 22, 23, 8, 25, 52, 27, 14, 29, 10, 31, 64, 11, 68, 35, 72, 37, 38, 39, 80, 41, 7, 43, 44, 3, 23, 47, 48, 49, 100, 17, 104, 53, 18, 55, 28, 57, 116, 59, 4, 61, 31, 63, 128, 65, 11, 67, 136, 23, 35, 71, 16, 73
OFFSET
1,2
LINKS
FORMULA
a(A006086(n)) = A006087(n). - Reinhard Zumkeller, Mar 17 2012
From Amiram Eldar, Mar 10 2023: (Start)
a(n)/A103340(n) = n*A034444(n)/A034448(n).
a(n)/A103340(n) <= A099377(n)/A099378(n), with equality if and only if n is squarefree (A005117). (End)
EXAMPLE
1, 4/3, 3/2, 8/5, 5/3, 2, ...
a(8) = 16 because the unitary divisors of 8 are {1,8} and 2/(1/1 + 1/8) = 16/9.
MAPLE
with(numtheory): udivisors:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k], n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end: utau:=n->nops(udivisors(n)): usigma:=n->sum(udivisors(n)[j], j=1..nops(udivisors(n))): uH:=n->n*utau(n)/usigma(n):seq(numer(uH(n)), n=1..81);
MATHEMATICA
ud[n_] := 2^PrimeNu[n]; usigma[n_] := DivisorSum[n, If[GCD[#, n/#] == 1, #, 0]&]; a[1] = 1; a[n_] := Numerator[n*ud[n]/usigma[n]]; Array[a, 100] (* Jean-François Alcover, Dec 03 2016 *)
a[n_] := Numerator[n * Times @@ (2 / (1 + Power @@@ FactorInteger[n]))]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Mar 10 2023 *)
PROG
(Haskell)
import Data.Ratio ((%), numerator)
a103339 = numerator . uhm where uhm n = (n * a034444 n) % (a034448 n)
-- Reinhard Zumkeller, Mar 17 2012
(Python)
from sympy import gcd
from sympy.ntheory.factor_ import udivisor_sigma
def A103339(n): return (lambda x, y: y*n//gcd(x, y*n))(udivisor_sigma(n), udivisor_sigma(n, 0)) # Chai Wah Wu, Oct 20 2021
(PARI) a(n) = {my(f = factor(n)); numerator(n * prod(i=1, #f~, 2/(1 + f[i, 1]^f[i, 2]))); } \\ Amiram Eldar, Mar 10 2023
CROSSREFS
Cf. A103340 (denominators), A099377, A099378.
KEYWORD
frac,nonn
AUTHOR
Emeric Deutsch, Jan 31 2005
STATUS
approved
Harmonic means of the infinitary divisors of the infinitary harmonic numbers.
+10
2
1, 2, 3, 4, 4, 6, 7, 7, 11, 13, 13, 10, 7, 15, 16, 15, 9, 20, 18, 14, 25, 24, 19, 25, 15, 27, 28, 30, 18, 36, 13, 21, 17, 29, 40, 33, 24, 28, 38, 31, 29, 45, 34, 27, 28, 44, 27, 60, 36, 52, 46, 26, 51, 42, 55, 33, 66, 40, 24, 37, 49, 29, 47, 57, 34, 68, 49, 44
OFFSET
1,2
COMMENTS
Each term appears a finite number of times in the sequence (Hagis and Cohen, 1990).
LINKS
Peter Hagis, Jr. and Graeme L. Cohen, Infinitary harmonic numbers, Bull. Australian Math. Soc., Vol. 41, No. 1 (1990), pp. 151-158.
FORMULA
a(n) = A361316(A063947(n)).
MATHEMATICA
f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; s[1] = 1; s[n_] := n * Times @@ f @@@ FactorInteger[n]; Select[Array[s, 10^4], IntegerQ]
PROG
(PARI) ihmean(n) = {my(f = factor(n), b); n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1))); };
lista(kmax) = {my(ih); for(k = 1, kmax, ih = ihmean(k); if(denominator(ih) == 1, print1(ih, ", "))); }
CROSSREFS
Similar sequences: A001600, A006087.
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 09 2023
STATUS
approved
a(n) is the number of distinct prime factors of the n-th unitary harmonic number.
+10
2
0, 2, 2, 3, 3, 4, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 5, 4, 4, 3, 5, 4, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 5, 5, 4, 4, 4, 5, 6, 5, 6, 5, 5, 6, 6, 5, 5, 6, 6, 5, 5, 6, 6, 6, 6, 5, 6, 5, 6, 6, 6, 5, 6, 5, 6, 5, 6, 5, 6, 4, 5, 6, 6, 6, 6, 5, 6, 5, 6, 6, 6, 6, 5, 6
OFFSET
1,2
COMMENTS
Each term appears a finite number of times in the sequence (Hagis and Lord, 1975).
LINKS
Peter Hagis, Jr. and Graham Lord, Unitary harmonic numbers, Proc. Amer. Math. Soc., Vol. 51, No. 1 (1975), pp. 1-7.
FORMULA
a(n) = A001221(A006086(n)).
MATHEMATICA
uh[n_] := n * Times @@ (2/(1 + Power @@@ FactorInteger[n])); uh[1] = 1; PrimeNu[Select[Range[10^6], IntegerQ[uh[#]] &]]
PROG
(PARI) uhmean(n) = {my(f = factor(n)); n*prod(i=1, #f~, 2/(1+f[i, 1]^f[i, 2])); };
lista(kmax) = {my(uh); for(k = 1, kmax, uh = uhmean(k); if(denominator(uh) == 1, print1(omega(k), ", "))); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 10 2023
STATUS
approved
Harmonic means the bi-unitary divisors of the bi-unitary harmonic numbers (A286325).
+10
2
1, 2, 3, 4, 4, 6, 7, 7, 8, 11, 13, 13, 12, 10, 16, 7, 18, 16, 15, 24, 15, 20, 20, 18, 14, 22, 25, 24, 19, 25, 23, 27, 33, 31, 44, 32, 34, 30, 25, 36, 13, 46, 31, 21, 29, 40, 38, 33, 28, 40, 48, 38, 29, 45, 34, 47, 28, 32, 32, 44, 60, 27, 32, 28, 46, 26, 51
OFFSET
1,2
LINKS
Jozsef Sandor, On bi-unitary harmonic numbers, arXiv:1105.0294 [math.NT], 2011.
FORMULA
a(n) = A361782(A286325(n)).
EXAMPLE
a(3) = 3 since A286325(3) = 45, the bi-unitary divisors of 45 are 1, 5, 9, and 45, and their harmonic mean is 3.
MATHEMATICA
f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 10^5], IntegerQ]
PROG
(PARI) bhmean(n) = {my(f = factor(n), p, e); n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2)))); }
lista(kmax) = {my(bh); for(k = 1, kmax, bh = bhmean(k); if(denominator(bh) == 1, print1(bh, ", "))); }
CROSSREFS
Similar sequences: A001600, A006087, A361318.
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 24 2023
STATUS
approved
a(n) is the number of "Fermi-Dirac prime" factors (or I-components) of the n-th infinitary harmonic number.
+10
1
0, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 4, 3, 5, 5, 5, 4, 6, 5, 5, 6, 6, 5, 6, 5, 6, 6, 6, 5, 7, 4, 5, 5, 6, 7, 6, 6, 6, 7, 6, 6, 7, 6, 6, 6, 7, 6, 8, 7, 7, 7, 6, 7, 7, 7, 6, 8, 6, 5, 6, 7, 6, 7, 7, 6, 8, 7, 7, 8, 7, 6, 7, 8, 7, 6, 8, 7, 7, 7, 7, 9, 6, 8, 6, 8, 8, 7
OFFSET
1,2
COMMENTS
Each term appears a finite number of times in the sequence (Hagis and Cohen, 1990).
LINKS
Peter Hagis, Jr. and Graeme L. Cohen, Infinitary harmonic numbers, Bull. Australian math. Soc., Vol. 41 (1990), pp. 151-158.
FORMULA
a(n) = A064547(A063947(n)).
MATHEMATICA
f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; ih[1] = 1; ih[n_] := n*Times @@ f @@@ FactorInteger[n]; ic[n_] := Plus @@ (DigitCount[Last /@ FactorInteger[n], 2, 1]); ic[1] = 0; ic /@ Select[Range[10^5], IntegerQ[ih[#]] &]
PROG
(PARI) A064547(n) = {my(f = factor(n)[, 2]); sum(k=1, #f, hammingweight(f[k])); } \\ Michel Marcus at A064547
ihmean(n) = {my(f = factor(n), b); n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1))); };
lista(kmax) = {my(ih); for(k = 1, kmax, ih = ihmean(k); if(denominator(ih) == 1, print1(A064547(k), ", "))); }
CROSSREFS
Cf. A006086, A006087, A361384 (analogous unitary sequence).
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 10 2023
STATUS
approved
Unitary harmonic numbers (A006086) that are not unitary arithmetic numbers (A103826).
+10
0
90, 40682250, 81364500, 105773850, 423095400, 1798155450, 14385243600
OFFSET
1,1
COMMENTS
There are 290 unitary harmonic numbers below 10^12, and only 7 of them are in this sequence.
EXAMPLE
90 is in the sequence since its unitary divisors are {1, 2, 5, 9, 10, 18, 45, 90}, their harmonic mean, 4, is an integer, but their arithmetic mean, 45/2, is not.
MATHEMATICA
q[n_] := Module[{f = FactorInteger[n], d, s}, d = 2^Length[f]; s = Times @@ (1 + Power @@@ f); IntegerQ[n*d/s] && !IntegerQ[s/d]]; Select[Range[5*10^7], q]
CROSSREFS
The unitary version of A046999.
Subsequence of A006086.
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Apr 19 2022
STATUS
approved

Search completed in 0.014 seconds