[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a005994 -id:a005994
Displaying 1-7 of 7 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A282011 Number T(n,k) of k-element subsets of [n] having an even sum; triangle T(n,k), n>=0, 0<=k<=n, read by rows. +10
20
1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 4, 6, 3, 0, 1, 3, 6, 10, 9, 3, 0, 1, 3, 9, 19, 19, 9, 3, 1, 1, 4, 12, 28, 38, 28, 12, 4, 1, 1, 4, 16, 44, 66, 60, 40, 20, 5, 0, 1, 5, 20, 60, 110, 126, 100, 60, 25, 5, 0, 1, 5, 25, 85, 170, 226, 226, 170, 85, 25, 5, 1, 1, 6, 30, 110, 255, 396, 452, 396, 255, 110, 30, 6, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,12
COMMENTS
Row n is symmetric if and only if n mod 4 in {0,3} (or if T(n,n) = 1).
LINKS
Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
Johann Cigler, Some Pascal-like triangles, 2018.
FORMULA
T(n,k) = Sum_{j=0..floor((n+1)/4)} C(ceiling(n/2),2*j) * C(floor(n/2),k-2*j).
T(n,k) = A007318(n,k) - A159916(n,k).
Sum_{k=0..n} k * T(n,k) = A057711(n-1) for n>0.
Sum_{k=0..n} (k+1) * T(n,k) = A087447(n) + [n=2].
EXAMPLE
T(5,0) = 1: {}.
T(5,1) = 2: {2}, {4}.
T(5,2) = 4: {1,3}, {1,5}, {2,4}, {3,5}.
T(5,3) = 6: {1,2,3}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {3,4,5}.
T(5,4) = 3: {1,2,3,4}, {1,2,4,5}, {2,3,4,5}.
T(5,5) = 0.
T(7,7) = 1: {1,2,3,4,5,6,7}.
Triangle T(n,k) begins:
1;
1, 0;
1, 1, 0;
1, 1, 1, 1;
1, 2, 2, 2, 1;
1, 2, 4, 6, 3, 0;
1, 3, 6, 10, 9, 3, 0;
1, 3, 9, 19, 19, 9, 3, 1;
1, 4, 12, 28, 38, 28, 12, 4, 1;
1, 4, 16, 44, 66, 60, 40, 20, 5, 0;
1, 5, 20, 60, 110, 126, 100, 60, 25, 5, 0;
1, 5, 25, 85, 170, 226, 226, 170, 85, 25, 5, 1;
1, 6, 30, 110, 255, 396, 452, 396, 255, 110, 30, 6, 1;
MAPLE
b:= proc(n, s) option remember; expand(
`if`(n=0, s, b(n-1, s)+x*b(n-1, irem(s+n, 2))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
seq(T(n), n=0..16);
MATHEMATICA
Flatten[Table[Sum[Binomial[Ceiling[n/2], 2j]Binomial[Floor[n/2], k-2j], {j, 0, Floor[(n+1)/4]}], {n, 0, 10}, {k, 0, n}]] (* Indranil Ghosh, Feb 26 2017 *)
PROG
(PARI) a(n, k)=sum(j=0, floor((n+1)/4), binomial(ceil(n/2), 2*j)*binomial(floor(n/2), k-2*j));
tabl(nn)={for(n=0, nn, for(k=0, n, print1(a(n, k), ", "); ); print(); ); } \\ Indranil Ghosh, Feb 26 2017
CROSSREFS
Columns k=0..10 give (offsets may differ): A000012, A004526, A002620, A005993, A005994, A032092, A032093, A018211, A018212, A282077, A282078.
Row sums give A011782.
Main diaginal gives A133872(n+1).
Lower diagonals T(n+j,n) for j=1..10 give: A004525(n+1), A282079, A228705, A282080, A282081, A282082, A282083, A282084, A282085, A282086.
T(2n,n) gives A119358.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 04 2017
STATUS
approved
A254338 Initial digits of A254143 in decimal representation. +10
8
1, 4, 7, 1, 2, 3, 3, 4, 6, 1, 1, 2, 2, 2, 3, 3, 3, 4, 6, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(n) = A000030(A254143(n));
also initial digits of A254323: a(n) = A000030(A254323(n)).
all terms are of the form u*v mod 10, where u <= v and belonging to {1,3,4,6,7}, the distinct elements of A254397:
length of k-th run of consecutive 1s = A005993(k-2), k > 1;
length of k-th run of consecutive 2s = k*(k+1)/2 = A000217(k), k >= 1;
length of k-th run of consecutive 3s = k+1, k >= 1;
length of k-th run of consecutive 4s = A065033(k-1);
n with a(n) = 4: A237424(n) = (10^a+10^b+1)/3 with b = 0, see also A093137, A133384;
n with a(n) = 6: A237424(n) = (10^a+10^b+1)/3 with a = b; A005994(a(n)) = 6 for n > 1; see also A199682;
LINKS
PROG
(Haskell)
a254338 = a000030 . a254143
(PARI) listA237424(lim)=my(v=List(), a, t); while(1, for(b=0, a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++)
do(lim)=my(v=List(), u=listA237424(lim), t); for(i=1, #u, for(j=1, i, t=u[i]*u[j]; if(t>lim, break); listput(v, t))); apply(n->digits(n)[1], Set(v)) \\ Charles R Greathouse IV, May 13 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Feb 27 2015
STATUS
approved
A283113 Triangle read by rows: T(n,k) is the number of nonequivalent ways (mod D_3) to place k points on an n X n X n triangular grid so that no two of them are on the same row, column or diagonal (n >= 1). +10
6
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 9, 5, 1, 5, 19, 23, 3, 1, 7, 38, 82, 40, 1, 1, 8, 66, 230, 242, 45, 1, 10, 110, 560, 1038, 533, 29, 1, 12, 170, 1208, 3504, 3546, 821, 6, 1, 14, 255, 2392, 9998, 16917, 9137, 807, 1, 16, 365, 4405, 25158, 64345, 63755, 17408, 422 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
Length of n-th row is A004396(n) + 1, for 1 <= n <= 21, where A004396(n) is the maximal number of points that can be placed under the condition mentioned above.
Rotations and reflections of placements are not counted. If they are to be counted, see A193986.
In terms or triangular chess: Number of nonequivalent ways (mod D_3) to arrange k nonattacking rooks on an n X n X n board, k>=0, n>=1.
LINKS
EXAMPLE
The table begins with T(1,0), T(1,1);
1, 1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 9, 5;
1, 5, 19, 23, 3;
1, 7, 38, 82, 40, 1;
1, 8, 66, 230, 242, 45;
1, 10, 110, 560, 1038, 533, 29;
...
CROSSREFS
Row sums give A283117.
KEYWORD
nonn,tabf
AUTHOR
Heinrich Ludwig, Mar 10 2017
STATUS
approved
A006010 Number of paraffins (see Losanitsch reference for precise definition).
(Formerly M3897)
+10
4
1, 5, 20, 52, 117, 225, 400, 656, 1025, 1525, 2196, 3060, 4165, 5537, 7232, 9280, 11745, 14661, 18100, 22100, 26741, 32065, 38160, 45072, 52897, 61685, 71540, 82516, 94725, 108225, 123136, 139520, 157505, 177157, 198612, 221940, 247285, 274721, 304400 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This is also the square of the sum of the odd numbers plus the square of the sum of the even numbers, up to n. E.g., a(4) = (1+3)^2 + (2+4)^2 = 52. - Scott R. Shannon, Feb 20 2019
The area of a square whose side is a segment connecting the ends of a broken line (snake), the adjacent links of which are perpendicular and equal to the numbers 1, 2, 3, 4, ..., n. For example, a(5) = 9^2 + 6^2 = 117. - Nicolay Avilov, Aug 02 2022
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Nicolay Avilov, The problem of a broken line in a square (in Russian).
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
FORMULA
Sum of [ 1, 3, 9, ... ](A005994) + [ 0, 0, 1, 3, 9, ... ] + 2*[ 0, 1, 5, 15, 35, ... ](binomial(n, 4)).
If n is odd then a(n) = (1/8) * (n^4 + 2*n^3 + 2*n^2 + 2*n + 1) = Det(Transpose[M]*M) where M is the 2 X 3 matrix whose rows are [(n-1)/2, (n-1)/2], [(n-1)/2 + 1, 0] and [(n-1)/2 + 1, (n-1)/2 + 1]. If n is even then a(n) = (1/8) * (n^4 + 2*n^3 + 2*n^2) = Det(Transpose[M]*M) where M is the 2 X 3 matrix whose rows are [n/2, 0], [n/2, n/2] and [n/2 + 1, 0]. - Gerald McGarvey, Oct 30 2007
G.f.: -x*(x^4+2*x^3+6*x^2+2*x+1) / ((x-1)^5*(x+1)^2). - Colin Barker, Mar 20 2013
E.g.f.: (x*(7 + 15*x + 8*x^2 + x^3)*cosh(x) + (1 + 5*x + 15*x^2 + 8*x^3 + x^4)*sinh(x))/8. - Stefano Spezia, Jul 08 2020
MATHEMATICA
CoefficientList[Series[-(x^4 + 2 x^3 + 6 x^2 + 2 x + 1)/((x - 1)^5 (x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2013 *)
LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {1, 5, 20, 52, 117, 225, 400}, 40] (* Harvey P. Dale, Dec 13 2018 *)
PROG
(PARI) Vec(-x*(x^4+2*x^3+6*x^2+2*x+1)/((x-1)^5*(x+1)^2) + O(x^100)) \\ Colin Barker, Oct 05 2015
CROSSREFS
Cf. A005994, A186424 (2nd differences), A317614 (1st differences), A335648 (partial sums).
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from David W. Wilson
STATUS
approved
A006009 Number of paraffins.
(Formerly M3513)
+10
3
4, 16, 48, 108, 216, 384, 640, 1000, 1500, 2160, 3024, 4116, 5488, 7168, 9216, 11664, 14580, 18000, 22000, 26620, 31944, 38016, 44928, 52728, 61516, 71344, 82320, 94500, 108000, 122880, 139264, 157216, 176868, 198288, 221616, 246924, 274360, 304000, 336000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
REFERENCES
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
FORMULA
a(n) = 2*(A005994(n) + binomial(n, 4)).
G.f.: 4*x*(1-x^3) / ((1-x)^4*(1-x^2)^2). - Alois P. Heinz, Aug 13 2008
a(n) = Sum_{i=1..n} i*floor(i^2/2). - Enrique Pérez Herrero, Mar 10 2012
MAPLE
a:= n-> (Matrix([[0$4, 4, 16, 48, 108]]). Matrix(8, (i, j)-> if (i=j-1) then 1 elif j=1 then [4, -4, -4, 10, -4, -4, 4, -1][i] else 0 fi)^n)[1, 1]: seq(a(n), n=1..40); # Alois P. Heinz, Aug 13 2008
MATHEMATICA
a[n_] := 1/16*(2*n^4+12*n^3+24*n^2+2*(9-(-1)^n)*n-3*(-1)^n+3); Array[a, 40] (* Jean-François Alcover, Mar 17 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A141783 Number of bracelets (turn over necklaces) with n beads: 1 blue, 12 green, and r = n - 13 red. +10
3
1, 7, 49, 231, 924, 3108, 9324, 25236, 63090, 147070, 323554, 676270, 1352540, 2600612, 4829708, 8692788, 15212379, 25949469, 43249115, 70562765, 112900424, 177412664, 274183208, 417232088, 625848132, 926250780, 1353751140 (list; graph; refs; listen; history; text; internal format)
OFFSET
13,2
LINKS
Harold S. Grant, On a Formula for Circular Permutations, Mathematics Magazine, Vol. 23, No. 3 (Jan. - Feb., 1950), pp. 133-136
FORMULA
a(n) = 1/2*(binomial(n-1,12) + binomial((n-2+n mod 2)/2, 6)).
a(n) = (1/(2*12!))*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*(n+12)*((n+1)*(n+3)*(n+5)*(n+7)*(n+9)*(n+11) + 1*3*5*7*9*11) - (1/15)*(1/2^10)*(n^5+(65/2)*n^4+400*n^3+(4615/2)*n^2+6154*n+(11895/2))*(1/2)*(1-(-1)^n) [Yosu Yurramendi, Jun 24 2013]
MAPLE
A141783:=n->(1/2)*(binomial(n - 1, 12) + binomial((n - 2 + (n mod 2))/2, 6)); seq(A141783(n), n=13..50); # Wesley Ivan Hurt, Jan 30 2014
MATHEMATICA
Table[(1/2) (Binomial[n - 1, 12] + Binomial[(n - 2 + Mod[n, 2])/2, 6]), {n, 13, 50}] (* Wesley Ivan Hurt, Jan 30 2014 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Washington Bomfim, Aug 17 2008
EXTENSIONS
Revised by Washington Bomfim, Jul 24 2012
STATUS
approved
A301740 The number of trees with 5 nodes labeled by positive integers, where each tree's label sum is n. +10
2
3, 9, 24, 50, 96, 164, 267, 408, 603, 856, 1186, 1598, 2115, 2742, 3505, 4411, 5489, 6746, 8215, 9904, 11849, 14059, 16573, 19401, 22586, 26138, 30103, 34493, 39357, 44707, 50596, 57037, 64086, 71757, 80109, 89157, 98964, 109545, 120966, 133244, 146448, 160595, 175758, 191955 (list; graph; refs; listen; history; text; internal format)
OFFSET
5,1
COMMENTS
Computed by the sum over the A000055(5)=3 shapes of the trees: the linear graph of the n-Pentane, the branched 2-Methyl-Butane, and the star graph of (1,1)-Bimethyl-Propane.
LINKS
R. J. Mathar, Labeled Trees with Fixed Node Label sum, sequence v_5.
FORMULA
a(n) = A005994(n-5)+A001752(n-5)+A002621(n-5).
EXAMPLE
a(5)=3 because there is a linear tree with all labels equal 1, the branched tree with all labels equal to 1, and the star tree with all labels equal 1.
MAPLE
-x^5*(3+3*x+6*x^2+5*x^3+5*x^4+2*x^5+x^6)/(1+x^2)/(1+x+x^2)/(1+x)^2/(x-1)^5 ;
taylor(%, x=0, 80) ;
gfun[seriestolist](%) ;
CROSSREFS
Cf. A002620 (labeled trees with 3 nodes), A301739 (labeled trees with 4 nodes).
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 26 2018
STATUS
approved
page 1

Search completed in 0.010 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 12:15 EDT 2024. Contains 375517 sequences. (Running on oeis4.)