Some Pascal-like triangles

Johann Cigler

Abstract

We collect some simple facts about analogues of Pascal's triangle where the entries count subsets of the integers with an even or odd sum of its elements. A widely known example is Losanitsch's triangle.

1. Introduction

The entries $\binom{n}{k}$ of Pascal's triangle count the subsets of $\{1, \dots, n\}$ with k elements which

will be called k – sets for short.

A k – set S will be called *even*, if the sum of its elements is even and *odd* if this sum is odd. By convention the empty set is even.

Let $E_{n,k}$ be the set of all even k – subsets of $\{1, \dots, n\}$ and $e(n,k) = |E_{n,k}|$ the number of its elements and let $O_{n,k}$ be the set of all odd k – subsets of $\{1, \dots, n\}$ and $o(n,k) = |O_{n,k}|$ the number of its elements.

For example e(5,3) = 6 because $E_{5,3} = \{\{1,2,3\},\{1,2,5\},\{1,3,4\},\{1,4,5\},\{2,3,5\},\{3,4,5\}\}$. Let us note the trivial fact

$$e(n,k) + o(n,k) = \binom{n}{k}.$$
(1.1)

Lemma 1

If k is odd then o(2n,k) = e(2n,k) because $\{s_1, \dots, s_k\} \leftrightarrow \{2n+1-s_1, \dots, 2n+1-s_k\}$ is a bijection.

Lemma 2

$$e(n,k) = e(n-2,k) + \binom{n-2}{k-1} + o(n-2,k-2),$$

$$o(n,k) = o(n-2,k) + \binom{n-2}{k-1} + e(n-2,k-2).$$
(1.2)

Proof

There are 3 possibilities.

a) A k-subset of $\{1, \dots, n\}$ is a k-subset of $\{1, \dots, n-2\}$,

b) it contains precisely one of the numbers n-1 and n. The remaining (k-1) – set is then an arbitrary subset of $\{1, \dots, n-2\}$. There are $\binom{n-2}{k-1}$ such subsets.

c) It contains both n-1 and n. Since n+(n-1) is odd the remaining (k-2)-subset must have the opposite parity of the k-subsets.

Let e_k be the column with entries e(n,k) and o_k the column with entries o(n,k) for $n \in \mathbb{N}$. We consider some matrices whose columns are e_k or o_k .

2. Matrices where the columns c_k and c_{k+2} have the same parity

Ia) Let us first consider the matrix $(e(n,k)) = (e_0, e_1, e_2, e_3, \cdots)$ whose entries are the number of even sets (Cf. OEIS [3], A282011). The first terms are

 $\left(\begin{array}{cccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 2 & 2 & 1 & 0 & 0 \\ 1 & 2 & 4 & 6 & 3 & 0 & 0 \\ 1 & 3 & 6 & 10 & 9 & 3 & 0 \end{array}\right)$

Proposition 2.1

The numbers e(n,k) satisfy

$$e(n,k) = e(n-1,k) + e(n-1,k-1)$$
(2.1)

if kn is even and

$$e(2n+1,2k+1) = e(2n,2k+1) + e(2n,2k) + (-1)^{k-1} \binom{n}{k}.$$
(2.2)

Proof

Consider the difference

$$d(n,k) = e(n,k) - o(n,k)$$
(2.3)

and let

$$d_n(x) = \sum_{k=0}^n d(n,k) x^k.$$
 (2.4)

Since the right-hand-side is $\sum_{k} \sum_{j_1 < \dots < j_k} (-1)^{j_1 + \dots + j_k} x^k = \prod_{j=1}^n (1 + (-1)^j x)^{j_1 + \dots + j_k} x^{j_k}$

we see that

$$d_n(x) = \prod_{j=1}^n \left(1 + (-1)^j x \right)$$

which gives by induction

$$d_{n}(x) = (1+x)^{\left\lfloor \frac{n}{2} \right\rfloor} (1-x)^{\left\lfloor \frac{n+1}{2} \right\rfloor}.$$
 (2.5)

Thus

$$d_{2n}(x) = (1 - x^{2})^{n},$$

$$d_{2n+1}(x) = (1 - x)(1 - x^{2})^{n}.$$
(2.6)

By (1.1) and (2.3) we get $e(n,k) = \frac{\binom{n}{k} + d(n,k)}{2}$ and therefore

$$e_{2n}(x) = \frac{(1+x)^{2n} + (1-x^2)^n}{2},$$

$$e_{2n+1}(x) = \frac{(1+x)^{2n+1} + (1-x)(1-x^2)^n}{2}.$$
(2.7)

This implies

$$e_{2n}(x) = (1+x)e_{2n-1}(x),$$

$$e_{2n+1}(x) = (1+x)e_{2n}(x) - x(1-x^2)^n,$$
(2.8)

which is equivalent with Proposition 2.1.

Since
$$\sum_{k=0}^{n} e(n, n-k)x^{k} = x^{n}e_{n}\left(\frac{1}{x}\right)$$
 (2.7) implies

Corollary 2.1

$$e(n, n-k) = e(n, k)$$
 for $n \equiv 0, 3 \mod 4$,
 $e(n, n-k) = o(n, k)$ for $n \equiv 1, 2 \mod 4$.
(2.9)

Let us also derive some explicit formulae. From

$$e_{n}(x) = (1+x)^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{(1+x)^{\left\lfloor \frac{n+1}{2} \right\rfloor} + (1-x)^{\left\lfloor \frac{n+1}{2} \right\rfloor}}{2} = (1+x)^{\left\lfloor \frac{n}{2} \right\rfloor} \sum_{j} \left(\left\lfloor \frac{n+1}{2} \right\rfloor \right) x^{2j}$$
(2.10)

we get

$$e(n,k) = \sum_{j} \left(\left\lfloor \frac{n+1}{2} \right\rfloor \right) \left(\left\lfloor \frac{n}{2} \right\rfloor \right).$$
(2.11)

As special case we get the well-known formula

$$e(2n,n) = \sum_{k} {\binom{n}{2k}}^2.$$
(2.12)

The numbers e(n,k) are given explicitly by

$$2e(2n, 2k) = {\binom{2n}{2k}} + (-1)^k {\binom{n}{k}},$$

$$2e(2n+1, 2k) = {\binom{2n+1}{2k}} + (-1)^k {\binom{n}{k}}$$

$$2e(2n, 2k+1) = {\binom{2n}{2k+1}}$$

$$2e(2n+1, 2k+1) = {\binom{2n+1}{2k+1}} + (-1)^{k+1} {\binom{n}{k}}$$

(2.13)

Therefore the generating functions are

$$\sum_{n\geq 0} e(n,2k)x^n = \frac{x^{2k}}{2} \left(\frac{1}{(1-x)^{2k+1}} + \frac{(-1)^k (1+x)}{\left(1-x^2\right)^{k+1}} \right)$$
(2.14)

$$\sum_{n\geq 0} e(n,2k+1)x^n = \frac{x^{2k+1}}{2} \left(\frac{1}{(1-x)^{2k+2}} + \frac{(-1)^{k+1}}{\left(1-x^2\right)^{k+1}} \right)$$
(2.15)

These can also be written in the following way: $r^{4k}a_{-}(r)$

$$\sum_{n\geq 0} e(n,4k)x^{n} = \frac{x^{n}e_{4k}(x)}{(1+x)^{4k}(1-x)^{4k+1}},$$

$$\sum_{n\geq 0} e(n,4k+1)x^{n} = \frac{x^{4k+1}o_{4k+1}(x)}{(1+x)^{4k+1}(1-x)^{4k+2}},$$

$$\sum_{n\geq 0} e(n,4k+2)x^{n} = \frac{x^{4k+2}o_{4k+2}(x)}{(1+x)^{4k+2}(1-x)^{4k+3}},$$

$$\sum_{n\geq 0} e(n,4k+3)x^{n} = \frac{x^{4k+3}e_{4k+3}(x)}{(1+x)^{4k+3}(1-x)^{4k+4}}.$$
(2.16)

Ib) The matrix $(o(n,k)) = (o_0, o_1, o_2, o_3, \cdots)$, cf. OEIS [3], A 159916.

/	a	0	a	a	a	0	0
(0	0	0	0	0	0	0
l	0	1	0	0	0	0	0
l	0	1	1	0	0	0	0
l	0	2	2	0	0	0	0
l	0	2	4	2	0	0	0
l	0	3	6	4	2	1	0
l	0	3	9	10	6	3	1

In the same way as above we get

$$o_n(x) = \frac{(1+x)^n - (1+x)^{\left\lfloor \frac{n}{2} \right\rfloor} (1-x)^{\left\lfloor \frac{n+1}{2} \right\rfloor}}{2}.$$
(2.17)

$$o(n,k) = \sum_{j} \left(\left\lfloor \frac{n+1}{2} \right\rfloor \right) \left(\left\lfloor \frac{n}{2} \right\rfloor \right) \left(k-2j-1 \right).$$
(2.18)

$$\sum_{n\geq 0} o(n,2k) x^n = \frac{x^{2k}}{2} \left(\frac{1}{(1-x)^{2k+1}} - \frac{(-1)^k (1+x)}{\left(1-x^2\right)^{k+1}} \right)$$
(2.19)

$$\sum_{n\geq 0} o(n, 2k+1)x^n = \frac{x^{2k+1}}{2} \left(\frac{1}{(1-x)^{2k+2}} + \frac{(-1)^k}{\left(1-x^2\right)^{k+1}} \right).$$
(2.20)

The generating functions can also be written as

$$\sum_{n\geq 0} o(n,4k) x^{n} = \frac{x^{4k} o_{4k}(x)}{(1+x)^{4k} (1-x)^{4k+1}},$$

$$\sum_{n\geq 0} o(n,4k+1) x^{n} = \frac{x^{4k+1} e_{4k+1}(x)}{(1+x)^{4k+1} (1-x)^{4k+2}},$$

$$\sum_{n\geq 0} o(n,4k+2) x^{n} = \frac{x^{4k+2} e_{4k+2}(x)}{(1+x)^{4k+2} (1-x)^{4k+3}},$$

$$\sum_{n\geq 0} o(n,4k+3) x^{n} = \frac{x^{4k+3} o_{4k+3}(x)}{(1+x)^{4k+3} (1-x)^{4k+4}}.$$
(2.21)

Ic) The matrix $(f(n,k)) = (e_0, o_1, e_2, o_3, \cdots)$.

(1	0	0	0	0	0	0
l	1	1	0	0	0	0	0
l	1	1	0	0	0	0	0
l	1	2	1	0	0	0	0
l	1	2	2	2	1	0	0
l	1	3	4	4	3	1	0
l	1	3	6	10	9	3	0

Proposition 2.2

$$f(2n,k) = e(2n,k),$$

$$f(2n+1,k) = f(2n,k) + f(2n,k-1)$$
(2.22)

Proof

f(2n,k) = e(2n,k) for all k. By definition this holds for even k. For odd k it follows from Lemma 1.

To show that f(2n+1,k) = e(2n,k) + e(2n,k-1) consider first an even k. The k - sets which do not contain 2n+1 are counted by e(2n,k) and the rest by o(2n,k-1) = e(2n,k-1). If k is odd then f(2n+1,k) = o(2n+1,k), o(2n,k) = e(2n,k) and the remaining (k-1) = e(2n,k-1).

If k is odd, then f(2n+1,k) = o(2n+1,k), o(2n,k) = e(2n,k) and the remaining (k-1) – set is even.

Id) The opposite matrix $(\overline{f}(n,k)) = (o_0, e_1, o_2, e_3, \cdots)$.

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	1	1	0	0	0	0
0	1	2	1	0	0	0
0	2	4	2	0	0	0
0	2	6	6	2	0	0
0	3	9	10	6	3	1)

Consider the polynomials $f_n(x) = \sum_{k=0}^n f(n,k)x^k$ and $\overline{f}_n(x) = \sum_{k=0}^n \overline{f}(n,k)x^k$. Since $f(n,k) - \overline{f}(n,k) = (-1)^k (e(n,k) - o(n,k))$ we get $f_n(x) - \overline{f}_n(x) = d(n,-x)$.

This gives

$$f_{n}(x) = \frac{(1+x)^{n} + (1-x)^{\left\lfloor \frac{n}{2} \right\rfloor} (1+x)^{\left\lfloor \frac{n+1}{2} \right\rfloor}}{2} = (1+x)^{\left\lfloor \frac{n+1}{2} \right\rfloor} \sum_{j} \left(\left\lfloor \frac{n}{2} \right\rfloor \right) x^{2j},$$

$$\overline{f}_{n}(x) = \frac{(1+x)^{n} - \prod_{j=0}^{n-1} \left(1 + (-1)^{j} x \right)}{2}.$$
(2.23)

Thus

$$f(n,k) = \sum_{j} \left(\left\lfloor \frac{n}{2} \right\rfloor \right) \left(\left\lfloor \frac{n+1}{2} \right\rfloor \right) \left(k-2j \right)$$
(2.24)

and

$$\overline{f}(n,k) = \sum_{j} \left(\left\lfloor \frac{n}{2} \right\rfloor \\ 2j+1 \right) \left(\left\lfloor \frac{n+1}{2} \right\rfloor \\ k-2j-1 \right).$$
(2.25)

(2.23) also implies

$$f(n, n-k) = f(n,k) \text{ for } n \equiv 0,1 \mod 4,$$

$$f(n, n-k) = \overline{f}(n,k) \text{ for } n \equiv 2,3 \mod 4.$$
(2.26)

Proposition 2.2 is equivalent with

$$f_{2n}(x) = e_{2n}(x),$$

$$f_{2n+1}(x) = (1+x)f_{2n}(x) = (1+x)e_{2n}(x).$$
(2.27)

Let us also sketch another approach. Since the columns c_k and c_{k+2} have the same parity by Lemma 2 the entries of these matrices satisfy

$$a(n,k) = a(n-2,k) + \binom{n-2}{k-1} + \binom{n-2}{k-2} - a(n-2,k-2) \text{ and thus}$$
$$a(n,k) = a(n-2,k) + \binom{n-1}{k-1} - a(n-2,k-2). \tag{2.28}$$

Therefore the polynomials $a_n(x) = \sum_{k=0}^n a(n,k)x^k$ satisfy the recursion

$$a_n(x) = (1 - x^2)a_{n-2}(x) + x(1 + x)^{n-1}.$$
(2.29)

By applying this to n and n-1 we get the homogeneous recursion

$$a_{n}(x) = (1+x)a_{n-1}(x) + (1-x^{2})a_{n-2}(x) - (1+x)(1-x^{2})a_{n-3}(x).$$
(2.30)

Observe that

$$z^{3} - (1+x)z^{2} - (1-x^{2})z + (1+x)(1-x^{2}) = (z-1-x)(z^{2}-1+x^{2}).$$
(2.31)

Therefore

$$\sum_{n\geq 0} e_n(x)z^n = \frac{1 - xz - (1 - x^2)z^2}{(1 - (1 + x)z)(1 - (1 - x^2)z^2)} = \frac{1}{2} \left(\frac{1}{1 - (1 + x)z} + \frac{1 + (1 - x)z}{1 - (1 - x^2)z^2}\right)$$
(2.32)

which again gives (2.7). Analogously we get

$$\sum_{n\geq 0} f_n(x)z^n = \frac{1-(1+x)z^2}{(1-(1+x)z)(1-(1-x^2)z^2)} = \frac{1}{2} \left(\frac{1}{1-(1+x)z} + \frac{1+(1+x)z}{1-(1-x^2)z^2} \right)$$
(2.33)

which gives (2.23).

3. Matrices whose columns $c_{\boldsymbol{k}}$ and $c_{\boldsymbol{k}+2}$ have opposite parity

Let us now consider another class of triangles where the columns c_k and c_{k+2} have opposite parity.

By Lemma 2 the entries of these matrices satisfy

$$b(n,k) = b(n-2,k) + \binom{n-1}{k-1} + b(n-2,k-2).$$
(3.1)

Therefore the polynomials $b_n(x) = \sum_{k=0}^n b(n,k)x^k$ satisfy the recursion

$$b_n(x) = (1+x^2)b_{n-2}(x) + x(1+x)^{n-1}.$$
(3.2)

By applying this to n and n-1 we get

$$b_n(x) = (1+x)b_{n-1}(x) + (1+x^2)b_{n-2}(x) - (1+x)(1+x^2)b_{n-3}(x).$$
(3.3)

IIa) The best known special case is *Losanitsch's triangle* $(L(n,k)) = (e_0, o_1, o_2, e_3, e_4, o_5, \cdots)$ The first terms are

1	0	0	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	0	0
1	2	2	1	0	0	0
1	2	4	2	1	0	0
1	3	6	6	3	1	0
1	3	9	10	9	3	1

By (3.1) we have

$$L(n,k) = L(n-2,k) + \binom{n-1}{k-1} + L(n-2,k-2)$$
(3.4)

which is often used to define this triangle.

This matrix has been obtained by the chemist S.M. Losanitsch [2] in his investigation of paraffin. Therefore we call the numbers L(n,k) Losanitsch numbers. The same triangle has also been considered in [1] in the study of some sort of necklaces where these numbers have been called necklace numbers. Further information can be found in OEIS [3], A034851.

Remark

By (2.13) we have e(n,n) = 1 if $n \equiv 0,3 \mod 4$ and o(n,n) = 1 else. Therefore Losanitsch's triangle is also characterized by the fact that all columns are e_k or o_k and all elements of the main diagonal are 1.

IIb) The opposite matrix $(\overline{L}(n,k)) = (o_0, e_1, e_2, o_3, o_4, e_5, \cdots)$.

(0	0	0	0	0	0	0	۱
0	0	0	0	0	0	0	
0	1	0	0	0	0	0	
0	1	1	0	0	0	0	
0	2	2	2	0	0	0	
0	2	4	4	2	0	0	
0	3	6	10	6	3	0	J

This is OEIS [3], A034852 and essentially also A034877.

The polynomials $L_n(x) = \sum_{k=0}^n L(n,k)x^k$ and $\overline{L}_n(x) = \sum_{k=0}^n \overline{L}(n,k)x^k$ satisfy the recursion (3.2). Therefore we get

$$L_{n}(x) - \overline{L}_{n}(x) = (1 + x^{2}) (L_{n-2}(x) - \overline{L}_{n-2}(x))$$

with initial values $L_{0}(x) - \overline{L}_{0}(x) = 1$ and $L_{1}(x) - \overline{L}_{1}(x) = 1 + x$.

Let

$$D_n(x) = L_n(x) - \overline{L}_n(x). \tag{3.5}$$

Then

$$D_{2n}(x) = (1+x^2)^n,$$

$$D_{2n+1}(x) = (1+x)(1+x^2)^n.$$
(3.6)

Therefore we get

$$L_n(x) = \frac{(1+x)^n + D_n(x)}{2},$$

$$\overline{L}_n(x) = \frac{(1+x)^n - D_n(x)}{2}.$$
(3.7)

Thus we get (cf. [1], Theorem 2.8)

$$L(2n, 2k+1) = \frac{1}{2} \begin{pmatrix} 2n \\ 2k+1 \end{pmatrix},$$

$$L(n,k) = \frac{1}{2} \begin{pmatrix} n \\ k \end{pmatrix} + \begin{pmatrix} \left\lfloor \frac{n}{2} \right\rfloor \\ \left\lfloor \frac{k}{2} \right\rfloor \end{pmatrix} \quad \text{else.}$$
(3.8)

Note that

$$L_{2n+1}(x) = (1+x)L_{2n}(x).$$
(3.9)

Analogously as above we get

$$\sum_{n\geq 0} L_n(x) z^n = \frac{1 - (1 + x + x^2) z^2}{(1 - (1 + x)z)(1 - (1 + x^2) z^2)} = \frac{1}{2} \left(\frac{1}{1 - (1 + x)z} + \frac{1 + (1 + x)z}{1 - (1 + x^2) z^2} \right).$$
(3.10)

Further properties of the Losanitsch polynomials can be found in [1] and will not be repeated here. Let us only mention that by (3.6) $L_n(x)$ is palindromic since

$$L(n,k) = L(n,n-k).$$
 (3.11)

Comparing with (2.16) and (2.21) we get

Proposition 3.1

$$\sum_{n} L(n,k)x^{n} = \sum_{n} L(n,n-k)x^{n} = \frac{x^{k}e_{k}(x)}{(1-x)^{k+1}(1+x)^{k}}.$$
(3.12)

,

There exists also another interesting relation between the numbers e(n,k) and L(n,k).

Proposition 3.2

$$\sum_{n} e(n, n-k) x^{n} = \frac{x^{k}}{(1-x)^{2\left\lfloor \frac{k+1}{2} \right\rfloor + 1} \left(1+x^{2}\right)^{\left\lfloor \frac{k}{2} \right\rfloor + 1}} L_{k+2}(-x).$$
(3.13)

Proof

It suffices to show that

$$\sum_{n} e(n, n-2k)x^{n} = \frac{x^{2k}}{(1-x)^{2k+1} (1+x^{2})^{k+1}} L_{2k+2}(-x)$$
(3.14)

since by Proposition 1.1

$$(1-x)\sum_{n}e(n,n-2k-1)x^{n} = \sum_{n}e(n,n-2k)x^{n+1}$$

...

and by (3.9)

$$L_{2k+3}(-x) = (1-x)L_{2k+2}(-x).$$

By (2.13) we get

$$e(n, n-2k) = \frac{1}{2} \left(\binom{n}{2k} + (-1)^{\left\lfloor \frac{n+1}{2} \right\rfloor - k} \left(\left\lfloor \frac{n}{2} \right\rfloor \right) \right)$$

This implies

$$\sum_{n} e(n, n-2k)x^{n} = \frac{x^{2k}}{2} \left(\frac{1}{(1-x)^{2k+1}} + \frac{1-x}{(1+x^{2})^{k+1}} \right) = \frac{x^{2k}}{(1-x)^{2k+1}(1+x^{2})^{k+1}} \left(\left(1+x^{2}\right)^{k+1} + (1-x)(1-x)^{2k+1} \right) = \frac{x^{2k}}{(1-x)^{2k}(1+x)^{2k}} \left(\left(1+x^{2}\right)^{k+1} + (1-x)(1-x)^{2k+1} \right) = \frac{x^{2k}}{(1-x)^{2k+1}(1+x)^{2k}} \left(\left(1+x^{2}\right)^{k+1} + (1-x)(1-x)^{2k+1} \right) = \frac{x^{2k}}{(1-x)^{2k}(1+x)^{2k}(1+x)^{2k}} \left(\left(1+x^{2}\right)^{k+1} + (1-x)(1-x)^{2k+1} \right) = \frac{x^{2k}}{(1-x)^{2k}(1+x)^{2k}(1+x)^{2k}} \left(\left(1+x^{2}\right)^{k+1} + (1-x)(1-x)^{2k} \right) = \frac{x^{2k$$

By (3.7) we get
$$(1+x^2)^{k+1} + (1-x)(1-x)^{2k+1} = L_{2k+2}(-x).$$

IIc) The matrix $(M(n,k)) = (e_0, e_1, o_2, o_3, e_4, e_5, \cdots)$

/ 1	a	a	a	a	a	a \
· -	0	0	0	0	0	0
1	0	0	0	0	0	0
1	1	1	0	0	0	0
1	1	2	0	0	0	0
1	2	4	2	1	0	0
1	2	6	4	3	0	0
1	3	9	10	9	3	1)

We have

$$M(n,k) = L(n+1,k) - L(n,k-1).$$
(3.15)

For M(n,4k) = e(n,4k) = e(n+1,4k) - e(n,4k-1), M(n,4k+2) = o(n,4k+2) = o(n+1,4k+2) - o(n,4k), M(n,4k+1) = e(n,4k+1) = o(n+1,4k+1) - e(n,4k),M(n,4k+3) = o(n,4k+3) = e(n+1,4k+3) - o(n,4k+2), Observing (3.15) we get

Corollary 3.1

$$\sum_{n} M(n, n-k) x^{n} = \frac{x^{k}}{(1-x^{2})^{k+1}} e_{k+1}(x).$$
(3.16)

Remark

$$M(n, n-k) = M(n, k) \quad \text{for } n \equiv 0, 2 \mod 4,$$

$$M(n, n-k) = \overline{M}(n, k) \quad \text{for } n \equiv 1, 3 \mod 4.$$
(3.17)

IId) The opposite matrix $(\overline{M}(n,k)) = (o_0, o_1, e_2, e_3, o_4, o_5, \cdots)$.

(0	0	0	0	0	0	0	١
	0	1	0	0	0	0	0	
	0	1	0	0	0	0	0	
	0	2	1	1	0	0	0	
	0	2	2	2	0	0	0	
	0	3	4	6	2	1	0	
l	0	3	6	10	6	3	0	

Then $\overline{M}(n,k) = \overline{L}(n+1,k) - \overline{L}(n,k-1).$

Let $M_n(x) = \sum_{k=0}^n M(n,k) x^k$ and $\overline{M}_n(x) = \sum_{k=0}^n \overline{M}(n,k) x^k$. Since $M(n,k) - \overline{M}(n,k) = (-1)^k (L(n,k) - \overline{L}(n,k))$ we get $M_n(x) - \overline{M}_n(x) = D_n(-x)$. Thus

$$M_{n}(x) = \frac{(1+x)^{n} + D_{n}(-x)}{2},$$

$$\overline{M}_{n}(x) = \frac{(1+x)^{n} - D_{n}(-x)}{2}.$$
(3.18)

Finally let us compute the generating function of $\sum_{n} f(n, n-k)x^{n}$.

Proposition 3.3

$$\sum_{n} f(n, n-2k+1)x^{n} = \frac{x^{2k-1}}{(1-x)^{2k} \left(1+x^{2}\right)^{k+1}} \sum_{j=0}^{2k} (-1)^{j} L(2k, j)x^{j}$$
(3.19)

and

$$\sum_{n} f(n, n-2k) x^{n} = \frac{x^{2k}}{(1-x)^{2k+1} (1+x^{2})^{k+1}} \frac{(1+x^{2})^{k+1} + (1-x)^{2k+1} (1+x)}{2}.$$
 (3.20)

Proof

(3.19) follows from f(n, n-2k+1) = e(n, n-2k+1).

Since by (2.27) and (2.13)

$$f(n, n-2k) = \frac{1}{2} \left(\binom{n}{2k} + (-1)^{k+\lfloor \frac{n}{2} \rfloor} \left(\lfloor \frac{n}{2} \rfloor \atop k \end{pmatrix} \right)$$

we get

$$\sum_{n} f(n, n-2k) x^{n} = \frac{x^{2k}}{2} \left(\frac{1}{(1-x)^{2k+1}} + \frac{(1+x)}{(1+x^{2})^{k+1}} \right)$$

or (3.20).

Final Remarks

There are analogous results for odd primes p.

Let a(n,k,j) be the number of k-subsets of $\{1,2,\dots,n\}$ whose sums are congruent to j modulo p and let ζ be a primitive p-th root of unity.

Then

$$\prod_{j=1}^{n} \left(1 + \zeta^{j} x \right) = \sum_{k} x^{k} \sum_{j_{1} < j_{2} < \dots < j_{k}} \zeta^{j_{1} + \dots + j_{k}} = \sum_{i} x^{k} \sum_{j=0}^{p-1} a(n,k,j) \zeta^{j}.$$

Observe that

$$\sum_{\ell=0}^{p-1} \prod_{j=1}^{n} \left(1 + \zeta^{\ell j} x \right) = \sum_{k} x^{k} \sum_{\ell=0}^{p-1} \sum_{j=0}^{p-1} a(n,k,j) \zeta^{\ell j} = p \sum_{k} a(n,k,0) x^{k}.$$

On the other hand we have

$$\sum_{\ell=0}^{p-1} \prod_{j=1}^{n} \left(1 + \zeta^{\ell j} x \right) = (1+x)^n + \sum_{\ell=1}^{p-1} \prod_{j=1}^{n} \left(1 + \zeta^{\ell j} x \right).$$

Since each product of $1 + \zeta^{\ell j}$ over p consecutive values of j equals $1 + x^p$ we see that

$$\sum_{\ell=1}^{p-1} \prod_{j=1}^{pn+i} \left(1 + \zeta^{\ell j} x \right) = b_i(x) \left(1 + x^p \right)^n$$

for some polynomial $b_i(x)$ of degree *i*.

Therefore the polynomial $a_n(x) = \sum_k a(n,k,0)x^k$ satisfies

$$a_{pn+i}(x) = \frac{(1+x)^{pn+i} + b_i(x)(1+x^p)^n}{p}.$$
(3.21)

Let us only consider the case p = 3 in more detail.

The first terms of the matrix (a(n,k,0)) are

ſ	1	0	0	0	0	0	0
	1	0	0	0	0	0	0
	1	0	1	0	0	0	0
	1	1	1	1	0	0	0
	1	1	2	2	0	0	0
	1	1	4	4	1	1	0
l	1	2	5	8	5	2	1

Here we get

$$a_{3n+i}(x) = \frac{(1+x)^{3n+i} + b_i(x)(1+x^3)^n}{3}$$
(3.22)

with $b_0(x) = 2$, $b_1(x) = 2 - x$, $b_2(x) = 2(1 - x + x^2)$.

For example

$$a_{0}(x) = 1 = \frac{1+2}{3}, \quad a_{1}(x) = 1 = \frac{(1+x)+(2-x)}{3}, \quad a_{2}(x) = 1 + x^{2} = \frac{(1+x)^{2}+2(1-x+x^{2})}{3},$$
$$a_{3}(x) = 1 + x + x^{2} + x^{3} = \frac{(1+x)^{3}+2(1+x^{3})}{3}, \cdots.$$

For the generating function we get therefore

$$\sum_{n\geq 0} a_n(x)z^n = \frac{1-xz-(1-x)xz^2-(1+x^3)z^3}{(1-(1+x)z)(1-(1+x^3)z^3)} = \frac{1}{3} \left(\frac{1}{1-(x+1)z} + \frac{2+(2-x)z+2(1-x+x^2)z^2}{1-(1+x^3)z^3} \right).$$

In this case we also get

$$a_n(x) = (1+x^3)a_{n-3}(x) + x(1+x)^{n-2}$$
(3.23)

or equivalently

$$a(n,k) = a(n-3,k) + \binom{n-2}{k-1} + a(n-3,k-3).$$
(3.24)

To prove this consider the elements n-2, n-1, n.

The number of k – sets which contain none of these numbers is a(n-3,k), the number of those which contain precisely one of these numbers is $\binom{n-3}{k-1}$, the number of those which

contain precisely two of these numbers is $\binom{n-3}{k-2}$, because n-2+n-1, n-2+n, n-1+n are

different modulo 3 and the number of those which contain all of them is a(n-3, k-3) because n-2+n-1+n=3n-3 is a multiple of 3.

References

- Tewodros Amdeberhan, Mahir Bilen Can and Victor H. Moll, Broken bracelets, Molien series, Paraffin wax and an elliptic curve of conductor 48, SIAM J. Discr. Math. 25 (2011), 1843-1859
- [2] S.M. Losanitsch, Die Isomerie- Arten bei den Homologen der Paraffin-Reihe, Chem. Berichte 30(1897), 1917-1926

[3] OEIS, <u>http://oeis.org/</u>