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Some Pascal-like triangles  

Johann Cigler 

    

Abstract 
 
We collect some simple facts about analogues of Pascal’s  triangle where the entries count 
subsets of the integers with an even or odd sum of its elements. A widely known example is 
Losanitsch’s triangle.  
 
1. Introduction 
 

The entries 
n

k

 
 
 

 of Pascal’s triangle count the subsets of  1, , n  with k  elements which 

will be called k  sets for short.  
A k  set S  will be called even, if the sum of its elements is even and odd if this sum is odd. 
By convention the empty set is even. 

Let ,n kE  be the set of all even k  subsets of  1, ,n  and ,( , ) n ke n k E  the number of its 

elements and let ,n kO  be the set of all odd k  subsets of  1, , n  and ,( , ) n ko n k O  the 

number of its elements. 
For example (5,3) 6e   because  5,3 {1, 2,3},{1, 2,5},{1,3, 4},{1, 4,5},{2,3,5},{3, 4,5} .E    

Let us note the trivial fact  

 ( , ) ( , ) .
n

e n k o n k
k

 
   

 
  (1.1) 

  
Lemma 1 
If k  is odd then (2 , ) (2 , )o n k e n k  because    1 1, , 2 1 , , 2 1k ks s n s n s       is  a 

bijection.  
 

Lemma 2 

 

2
( , ) ( 2, ) ( 2, 2),

1

2
( , ) ( 2, ) ( 2, 2).

1

n
e n k e n k o n k

k

n
o n k o n k e n k

k

 
       

 
       

  (1.2) 

Proof 

There are 3 possibilities. 

a)  A k  subset of  1, , n  is a k  subset of  1, , 2 ,n   

b) it contains precisely one of the numbers 1n  and .n  The remaining ( 1)k   set is then an 

arbitrary subset of  1, , 2 .n   There are 
2

1

n

k

 
  

  such subsets. 
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c) It contains both 1n  and .n  Since ( 1)n n   is odd the remaining ( 2)k   subset must 

have the opposite parity of the  k  subsets. 

 
Let ke  be the column with entries ( , )e n k  and ko  the column with entries ( , )o n k  for .n   

We consider some matrices whose columns are  ke  or .ko   

 
2. Matrices where the columns kc  and 2kc   have the same parity 

 
Ia) Let us first consider the matrix   ( , )e n k    0 1 2 3, , , ,e e e e   whose entries are the number 

of even sets (Cf. OEIS [3], A282011). The first terms are  
 

   
 
Proposition 2.1 
 
The numbers ( , )e n k  satisfy 
 ( , ) ( 1, ) ( 1, 1)e n k e n k e n k       (2.1) 
if kn  is even and  

 1(2 1,2 1) (2 ,2 1) (2 ,2 ) ( 1) .k n
e n k e n k e n k

k
  

        
 

  (2.2) 

 
Proof 
Consider the difference   
 ( , ) ( , ) ( , )d n k e n k o n k    (2.3) 
 and let 

 
0

( ) ( , ) .
n

k
n

k

d x d n k x


   (2.4) 

Since the right-hand-side is  1

1 1

( 1) 1 ( 1)k

k

n
j j k j

k j j j

x x 

  

     


 

we see that  

  
1

( ) 1 ( 1) 
n

j
n

j

d x x


    

which gives by induction 
 

    
1

2 2( ) 1 1 .
n n

nd x x x
   

           (2.5) 

 
Thus  

 
 

 

2
2

2
2 1

( ) 1 ,

( ) (1 ) 1 .

n

n

n

n

d x x

d x x x

 

  
  (2.6) 
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By (1.1) and (2.3) we get 

( , )

( , )
2

n
d n k

k
e n k

 
 

    and therefore 

 

 

 

 

2 2

2

2 1 2

2 1

(1 ) 1
( ) ,

2

(1 ) (1 ) 1
( ) .

2

nn

n

nn

n

x x
e x

x x x
e x





  


   


  (2.7) 

 
This implies  
 

 
 

2 2 1

2
2 1 2

( ) (1 ) ( ),

( ) (1 ) ( ) 1 ,

n n

n

n n

e x x e x

e x x e x x x





 

   
  (2.8) 

 
which is equivalent with Proposition 2.1. 
 

Since  
0

1
( , )

n
k n

n
k

e n n k x x e
x

    
 

   (2.7) implies 

 
Corollary 2.1 

 
( , ) ( , )  for 0,3mod 4,

( , ) ( , )  for 1,2mod 4.

e n n k e n k n

e n n k o n k n

  
  

  (2.9) 

  
 
Let us also derive some explicit formulae. From 
 

 

1 1

2 2
22 2

1
(1 ) (1 )

( ) (1 ) (1 ) 2
2

2

n n
n n

j
n

j

n
x x

e x x x x

j

    
               

   
            

 
   (2.10) 

we get 
 

 

1
( , ) .2 2

2 2j

n n
e n k

j k j

      
               

   (2.11) 

As special case we get the well-known formula 

 
2

(2 , ) .
2k

n
e n n

k

 
  

 
   (2.12) 
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The numbers ( , )e n k  are given explicitly by 

 

1

2
2 (2 , 2 ) ( 1) ,

2

2 1
2 (2 1, 2 ) ( 1)

2

2
2 (2 , 2 1)

2 1

2 1
2 (2 1, 2 1) ( 1)

2 1

k

k

k

n n
e n k

k k

n n
e n k

k k

n
e n k

k

n n
e n k

k k


   
     
   

   
      

   
 

    
   

          

  (2.13) 

 
Therefore the generating functions are 
  

 
 

2

12 1 2
0

1 ( 1) (1 )
( , 2 )

2 (1 ) 1

k k
n

kk
n

x x
e n k x

x x




    
   

   (2.14) 

 
 

2 1 1

12 2 2
0

1 ( 1)
( , 2 1)

2 (1 ) 1

k k
n

kk
n

x
e n k x

x x

 




    
   

   (2.15) 

These can also be written in the following way: 

 

4
4

4 4 1
0

4 1
4 1

4 1 4 2
0

4 2
4 2

4 2 4 3
0

4 3
4 3

4 3 4 4
0

( )
( , 4 ) ,

(1 ) (1 )

( )
( , 4 1) ,

(1 ) (1 )

( )
( , 4 2) ,

(1 ) (1 )

( )
( , 4 3) .

(1 ) (1 )

k
n k

k k
n

k
n k

k k
n

k
n k

k k
n

k
n k

k k
n

x e x
e n k x

x x

x o x
e n k x

x x

x o x
e n k x

x x

x e x
e n k x

x x







 





 





 



 

 
 

 
 

 
 









  (2.16) 

   
 
 
Ib) The matrix  ( , )o n k    0 1 2 3, , , ,o o o o  , cf.  OEIS [3], A 159916.  

 

 
 
In the same way as above we get 

 

1

2 2(1 ) (1 ) (1 )
( ) .

2

n n
n

n

x x x
o x

   
         

   (2.17) 
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1
( , ) .2 2

2 1 2 1j

n n
o n k

j k j

      
                 

   (2.18) 

 
 

 
 

2

12 1 2
0

1 ( 1) (1 )
( , 2 )

2 (1 ) 1

k k
n

kk
n

x x
o n k x

x x




    
   

   (2.19) 

 

 
 

2 1

12 2 2
0

1 ( 1)
( , 2 1) .

2 (1 ) 1

k k
n

kk
n

x
o n k x

x x






    
   

   (2.20) 

The generating functions can also be written as 

 

4
4

4 4 1
0

4 1
4 1

4 1 4 2
0

4 2
4 2

4 2 4 3
0

4 3
4 3

4 3 4 4
0

( )
( , 4 ) ,

(1 ) (1 )

( )
( , 4 1) ,

(1 ) (1 )

( )
( , 4 2) ,

(1 ) (1 )

( )
( , 4 3) .

(1 ) (1 )

k
n k

k k
n

k
n k

k k
n

k
n k

k k
n

k
n k

k k
n

x o x
o n k x

x x

x e x
o n k x

x x

x e x
o n k x

x x

x o x
o n k x

x x







 





 





 



 

 
 

 
 

 
 









  (2.21) 

 
 Ic) The matrix    0 1 2 3( , ) , , , , .f n k e o e o    

 

 
 
Proposition 2.2 

 
(2 , ) (2 , ),

(2 1, ) (2 , ) (2 , 1)

f n k e n k

f n k f n k f n k


   

  (2.22) 

 
Proof 

(2 , ) (2 , )f n k e n k  for all .k  By definition this holds for even .k   For odd k  it follows from 
Lemma 1.  
To show that (2 1, ) (2 , ) (2 , 1)f n k e n k e n k     consider first an even  .k   
The k  sets which do not contain 2 1n  are counted by (2 , )e n k  and the rest by 

(2 , 1) (2 , 1).o n k e n k     
If k  is odd, then (2 1, ) (2 1, ),f n k o n k    (2 , ) (2 , )o n k e n k  and the remaining ( 1)k   set 
is even.   
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Id) The opposite matrix    0 1 2 3( , ) , , , , .f n k o e o e    

 

 
 

Consider the polynomials 
0

( ) ( , )
n

k
n

k

f x f n k x


    and 
0

( ) ( , ) .
n

k
n

k

f x f n k x


   

Since  ( , ) ( , ) ( 1) ( , ) ( , )kf n k f n k e n k o n k     we get 

( ) ( ) ( , ).n nf x f x d n x      

 
This gives  

 

 

1
12 2

22

1

0

(1 ) (1 ) (1 )
( ) (1 ) ,2

2
2

(1 ) 1 ( 1)

( ) .
2

n n
nn

j
n

j

n
n j

j
n

n
x x x

f x x x

j

x x

f x

   
           





  
            

 

   





  (2.23) 

 
Thus 
  

 

1
( , ) 2 2

2 2j

n n
f n k

j k j

      
               

   (2.24) 

and 

 

1
( , ) .2 2

2 1 2 1j

n n
f n k

j k j

      
                 

   (2.25) 

 
(2.23) also implies 
 

 
( , ) ( , )  for 0,1mod 4,

( , ) ( , )  for 2,3mod 4.

f n n k f n k n

f n n k f n k n

  

  
  (2.26) 

 
 
Proposition 2.2 is equivalent with 
 

 2 2

2 1 2 2

( ) ( ),

( ) (1 ) ( ) (1 ) ( ).
n n

n n n

f x e x

f x x f x x e x



   
  (2.27) 
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Let us also sketch another approach. Since the columns kc  and 2kc   have the same parity by 

Lemma 2 the entries of these matrices satisfy 
2 2

( , ) ( 2, ) ( 2, 2)
1 2

n n
a n k a n k a n k

k k

    
             

 and thus 

 

 
1

( , ) ( 2, ) ( 2, 2).
1

n
a n k a n k a n k

k

 
       

  (2.28) 

 

Therefore the polynomials 
0

( ) ( , )
n

k
n

k

a x a n k x


  satisfy the recursion 

  2 1
2( ) 1 ( ) (1 ) .n

n na x x a x x x 
      (2.29) 

 
By applying this to n  and 1n  we get the homogeneous recursion 
 

    2 2
1 2 3( ) (1 ) ( ) 1 ( ) (1 ) 1 ( ).n n n na x x a x x a x x x a x           (2.30) 

Observe that 
 

       3 2 2 2 2 2(1 ) 1 (1 ) 1 1 1 .z x z x z x x z x z x              (2.31) 

Therefore 

 
 

      
2 2

2 22 2
0

1 1 1 1 1 (1 )
( )

2 1 (1 ) 1 11 (1 ) 1 1
n

n
n

xz x z x z
e x z

x z x zx z x z

        
         

   (2.32) 

which again gives (2.7). 
Analogously we get 
   

 
 

      
2

2 22 2
0

1 1 1 1 1 (1 )
( )

2 1 (1 ) 1 11 (1 ) 1 1
n

n
n

x z x z
f x z

x z x zx z x z

       
         

   (2.33) 

which gives (2.23). 
 
 
 
3. Matrices whose columns kc  and 2kc   have opposite parity 

 
Let us now consider another class of  triangles where the columns kc  and 2kc   have opposite 

parity.  
By Lemma 2 the entries of these matrices satisfy 
 

 
1

( , ) ( 2, ) ( 2, 2).
1

n
b n k b n k b n k

k

 
       

  (3.1) 

 

Therefore the polynomials 
0

( ) ( , )
n

k
n

k

b x b n k x


  satisfy the recursion 

  2 1
2( ) 1 ( ) (1 ) .n

n nb x x b x x x 
      (3.2) 
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By applying this to n  and 1n  we get 
  

    2 2
1 2 3( ) (1 ) ( ) 1 ( ) (1 ) 1 ( ).n n n nb x x b x x b x x x b x           (3.3) 

 
 
IIa) The best known special case is Losanitsch’s triangle    0 1 2 3 4 5( , ) , , , , , ,L n k e o o e e o    

The first terms are  

 
 
 
By (3.1) we have   

 
1

( , ) ( 2, ) ( 2, 2)
1

n
L n k L n k L n k

k

 
       

  (3.4) 

which is often used to define this triangle.   
 
This matrix has been obtained by the chemist S.M. Losanitsch [2] in his investigation of 
paraffin.  Therefore we call the numbers ( , )L n k  Losanitsch numbers. The same triangle has 
also been considered in [1] in the study of some sort of necklaces where these numbers have 
been called necklace numbers. Further information can be found in  OEIS [3], A034851. 
  
Remark 
 
By (2.13) we have ( , ) 1e n n   if 0,3mod 4n   and ( , ) 1o n n   else. Therefore Losanitsch’s 

triangle is also characterized by the fact  that all columns are ke  or ko  and all elements of the 

main diagonal are 1.   
 

IIb) The opposite matrix    0 1 2 3 4 5( , ) , , , , , , .L n k o e e o o e    

 

 
 
This is OEIS [3],  A034852 and essentially also  A034877. 
 

The polynomials 
0

( ) ( , )
n

k
n

k

L x L n k x


  and 
0

( ) ( , )
n

k
n

k

L x L n k x


  satisfy  the recursion (3.2). 

Therefore we get 
 

  2
2 2( ) ( ) 1 ( ) ( )n n n nL x L x x L x L x         

with initial values 0 0( ) ( ) 1L x L x   and 1 1( ) ( ) 1 .L x L x x     
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Let  
 ( ) ( ) ( ).n n nD x L x L x    (3.5) 

   
Then 

 
 

 

2
2

2
2 1

( ) 1 ,

( ) (1 ) 1 .

n

n

n

n

D x x

D x x x

 

  
  (3.6) 

 
Therefore we get 

 

(1 ) ( )
( ) ,

2

(1 ) ( )
( ) .

2

n
n

n

n
n

n

x D x
L x

x D x
L x

 


 


  (3.7) 

   
Thus  we get (cf. [1], Theorem 2.8) 

 

21
(2 ,2 1) ,

2 12

21
( , )   else.

2

2

n
L n k

k

n
n

L n k
k k

 
    
   
                    

  (3.8) 

   
Note that  
 2 1 2( ) (1 ) ( ).n nL x x L x     (3.9) 

 
Analogously as above we get 

 
 

      
2 2

2 22 2
0

1 1 1 1 1 (1 )
( ) .

2 1 (1 ) 1 11 (1 ) 1 1
n

n
n

x x z x z
L x z

x z x zx z x z

        
         

   (3.10) 

 
 
Further properties of the Losanitsch polynomials can be found in [1] and will not be repeated 
here. Let us only mention that by (3.6)  ( )nL x  is palindromic since 

 ( , ) ( , ).L n k L n n k    (3.11) 
 
Comparing with (2.16) and (2.21) we get 
 
Proposition 3.1 

 
1

( )
( , ) ( , ) .

(1 ) (1 )

k
n n k

k k
n n

x e x
L n k x L n n k x

x x  
     (3.12) 
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There exists also another interesting relation between the numbers ( , )e n k  and ( , ).L n k   
 
Proposition 3.2 

  
21

2 1 122 2

( , ) ( ).

(1 ) 1

k
n

kk k
n

x
e n n k x L x

x x
          

  

 


  (3.13) 

Proof 
It suffices to show that  

  
2

2 212 1 2
( , 2 ) ( )

(1 ) 1

k
n

kkk
n

x
e n n k x L x

x x


  
 


  (3.14) 

since by Proposition 1.1 
1(1 ) ( , 2 1) ( , 2 )n n

n n

x e n n k x e n n k x         

and by (3.9)      
                                                   2 3 2 2( ) (1 ) ( ).k kL x x L x       

 
By (2.13) we get 

1

21
( , 2 ) ( 1) 2

22

n
k

n
n

e n n k
k

k

   

   
                  

  

This implies 

   
  

2 2
12 2 1

1 12 1 2 2 1 2

1 1
( , 2 ) 1 (1 )(1 ) .

2 (1 ) 1 (1 ) 1

k k
kn k

k kk k
n

x x x
e n n k x x x x

x x x x

 
  

         
     



By (3.7) we get   12 2 1
2 21 (1 )(1 ) ( ).

k k
kx x x L x

 
        

  
 
IIc) The matrix    0 1 2 3 4 5( , ) , , , , , ,M n k e e o o e e    

 

 
 
We have  
 ( , ) ( 1, ) ( , 1).M n k L n k L n k      (3.15) 
For 

( , 4 ) ( ,4 ) ( 1,4 ) ( ,4 1),M n k e n k e n k e n k       
( , 4 2) ( ,4 2) ( 1,4 2) ( ,4 ),M n k o n k o n k o n k         
( , 4 1) ( ,4 1) ( 1,4 1) ( ,4 ),M n k e n k o n k e n k         
( , 4 3) ( ,4 3) ( 1,4 3) ( ,4 2),M n k o n k e n k o n k          
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Observing (3.15) we get 
 
Corollary 3.1 

 12 1
( , ) ( ).

(1 )

k
n

kk
n

x
M n n k x e x

x  
   (3.16) 

 
 
Remark 

 
( , ) ( , )   for 0,2mod 4,

( , ) ( , )   for 1,3mod 4.

M n n k M n k n

M n n k M n k n

  

  
  (3.17) 

 
 

IId) The opposite matrix    0 1 2 3 4 5( , ) , , , , , , .M n k o o e e o o    

 

 
 
Then ( , ) ( 1, ) ( , 1).M n k L n k L n k      
 

Let 
0

( ) ( , )
n

k
n

k

M x M n k x


  and 
0

( ) ( , ) .
n

k
n

k

M x M n k x


   

Since  ( , ) ( , ) ( 1) ( , ) ( , )kM n k M n k L n k L n k     we get ( ) ( ) ( ).n n nM x M x D x     

Thus 

 

(1 ) ( )
( ) ,

2

(1 ) ( )
( ) .

2

n
n

n

n
n

n

x D x
M x

x D x
M x

  


  


  (3.18) 

 
Finally let us compute the generating function of ( , ) .n

n

f n n k x   

 
Proposition 3.3 

 
 
2 1 2

12 2
0

( , 2 1) ( 1) (2 , )
(1 ) 1

k k
n j j

kk
n j

x
f n n k x L k j x

x x






   
 

    (3.19) 

and 
 

  
  12 2 12

12 1 2

1 (1 ) (1 )
( , 2 ) .

2(1 ) 1

k kk
n

kk
n

x x xx
f n n k x

x x

 



   
 

 
   (3.20) 
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Proof 
(3.19) follows from ( , 2 1) ( , 2 1).f n n k e n n k       
 
Since by (2.27) and (2.13) 

21
( , 2 ) ( 1) 2

22

n
k

n
n

f n n k
k

k

   

   
                  

  

we get 

 
2

12 1 2

1 (1 )
( , 2 )

2 (1 ) 1

k
n

kk
n

x x
f n n k x

x x


    
   

   

or (3.20). 
 
 
Final Remarks 
 
There are analogous results for odd primes .p   

Let ( , , )a n k j  be the number of k  subsets of  1, 2, , n  whose sums are congruent to  j  

modulo p   and let   be a primitive p  th root of unity.  

Then  

  1

1 2

1

01

1 ( , , ) .k

k

pn
j jj k k j

k j j j i jj

x x x a n k j  


 

   

      


  

Observe that 

 
1 1 1

0 0 01

1 ( , , ) ( , ,0) .
p p pn

j k j k

k j kj

x x a n k j p a n k x 
  

  

       

 
 

 On the other hand we have 

   
1 1

0 11 1

1 (1 ) 1 .
p pn n

j n j

j j

x x x 
 

  

       

 
  

Since each product of 1 j   over p  consecutive values of j  equals 1 px  we see that 

   
1

1 1

1 ( ) 1
pn ip

nj p
i

j

x b x x


 

   


  

for some polynomial ( )ib x  of degree .i   
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Therefore the polynomial ( ) ( , ,0) k
n

k

a x a n k x satisfies 

 
 (1 ) ( ) 1

( ) .

npn i p
i

pn i

x b x x
a x

p





  
   (3.21) 

 

Let us only consider the case 3p   in more detail.  

The first terms of the matrix  ( , ,0)a n k  are  

  

Here we get 

 
 3 3

3

(1 ) ( ) 1
( )

3

nn i
i

n i

x b x x
a x





  
   (3.22) 

 

with   2
0 1 2( ) 2,  ( ) 2 ,  ( ) 2 1 .b x b x x b x x x        

For example 

0

1 2
( ) 1 ,

3
a x


    1

(1 ) (2 )
( ) 1 ,

3

x x
a x

  
   

 2 2

2
2

(1 ) 2 1
( ) 1 ,

3

x x x
a x x

   
     

 3 3

2 3
3

(1 ) 2 1
( ) 1 , .

3

x x
a x x x x

  
        

For the generating function we get therefore 

 
    

 
 

2 3 3 2 2

3 33 3
0

1 (1 ) 1 2 (2 ) 2 11 1
( ) .

3 1 ( 1) 1 11 (1 ) 1 1
n

n
n

xz x xz x z x z x x z
a x z

x z x zx z x z

          
   
         

  

In this case we also get 
 

  3 2
3( ) 1 ( ) (1 )n

n na x x a x x x 
      (3.23) 

 
or equivalently 

 
2

( , ) ( 3, ) ( 3, 3).
1

n
a n k a n k a n k

k

 
       

  (3.24) 
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To prove this consider the elements 2, 1, .n n n    
The number of k   sets which contain none of these numbers is ( 3, ),a n k  the number of 

those which contain precisely one of these numbers is 
3

,
1

n

k

 
  

 the number of those which 

contain precisely two of these numbers is 
3

,
2

n

k

 
  

because 2 1, 2 , 1n n n n n n        are 

different modulo 3  and the number of those which contain all of them is ( 3, 3)a n k   
because 2 1 3 3n n n n       is  a multiple of 3.    
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