[go: up one dir, main page]

login
Search: a000027 -id:a000027
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n, k) is the number of graphs obtained by adding k pierced circles to a path graph P_n.
+10
0
1, 1, 0, 2, 2, 0, 12, 10, 3, 0, 82, 82, 28, 4, 0, 646, 738, 315, 60, 5, 0, 5574, 7198, 3636, 900, 110, 6, 0, 51386, 74086, 43225, 13020, 2135, 182, 7, 0, 498026, 793490, 524784, 185920, 37940, 4452, 280, 8, 0, 5019720, 8761906, 6475959, 2634912, 642180, 95508, 8442, 408, 9, 0
OFFSET
0,4
LINKS
Nicholas Owad and Anastasiia Tsvietkova, Random meander model for links, arXiv:2205.03451 [math.GT], 2022.
FORMULA
T(n, k) = Sum_{m=k..n} (-1)^(m+k)*binomial(m, k)*O(m, n), with O(k, s) = binomial(2*s-k-1, k)*C(s-k)^2 (see Lemma 3.3 at page 7 in Owad and Tsvietkova).
T(n, n-2) = A006331(n-1).
EXAMPLE
The triangle begins
1;
1, 0;
2, 2, 0;
12, 10, 3, 0;
82, 82, 28, 4, 0;
646, 738, 315, 60, 5, 0;
...
MATHEMATICA
bigO[k_, s_]:=Binomial[2s-k-1, k]CatalanNumber[s-k]^2; T[n_, k_]:=Sum[(-1)^(m+k)Binomial[m, k]bigO[m, n], {m, k, n}]; Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]]
CROSSREFS
Cf. A000007 (k = n), A000027 (k = n - 1), A000108, A001246 (row sums), A006331, A007318, A052553.
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, May 18 2022
STATUS
approved
Array read by upwards antidiagonals T(n,k) = J(k) + n*J(k+1) where J(n) = A001045(n) is the Jacobsthal numbers.
+10
0
0, 1, 1, 2, 2, 1, 3, 3, 4, 3, 4, 4, 7, 8, 5, 5, 5, 10, 13, 16, 11, 6, 6, 13, 18, 27, 32, 21, 7, 7, 16, 23, 38, 53, 64, 43, 8, 8, 19, 28, 49, 74, 107, 128, 85, 9, 9, 22, 33, 60, 95, 150, 213, 256, 171, 10, 10, 25, 38, 71, 116, 193, 298, 427, 512, 341
OFFSET
0,4
FORMULA
T(n, k) = (2^k - (-1)^k + n*(2^(k + 1) + (-1)^k))/3.
G.f.: (x*(y-1) - y)/((x - 1)^2*(y + 1)*(2*y - 1)). - Stefano Spezia, Jul 13 2022
EXAMPLE
Row n=0 is A001045(k), then for further rows we successively add A001045(k+1).
k=0 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
n=0: 0 1 1 3 5 11 21 43 85 171 ... = A001045
n=1: 1 2 4 8 16 32 64 128 256 512 ... = A000079
n=2: 2 3 7 13 27 53 107 213 427 853 ... = A048573
n=3: 3 4 10 18 38 74 150 298 598 1194 ... = A171160
n=4: 4 5 13 23 49 95 193 383 769 1535 ... = abs(A140683)
...
MATHEMATICA
T[n_, k_] := (2^k - (-1)^k + n*(2^(k + 1) + (-1)^k))/3; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 13 2022 *)
CROSSREFS
Antidiagonal sums give A320933(n+1).
KEYWORD
nonn,tabl,easy
AUTHOR
Paul Curtz, Jul 13 2022
STATUS
approved
Irregular triangle read by rows: T(n,k) is one half of the number of line segments of length 1 in the k-th antidiagonal of the Dyck path described in the n-th row of A237593.
+10
0
1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 1, 1, 3, 3, 1, 1, 1, 1, 4, 2, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 3, 4, 2, 1, 1, 1, 1, 2, 4, 2, 2, 1, 1, 1, 1, 1, 3, 5, 2, 1, 1, 1, 1, 1, 1, 3, 5, 2, 1, 1, 1, 1, 1, 3, 5, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 4, 2, 1, 1, 1, 1, 1, 1, 5, 4, 2, 2
OFFSET
1,5
EXAMPLE
Triangle begins (first 19 rows):
1;
1, 1;
1, 2;
1, 1, 2;
1, 2, 2;
1, 1, 1, 3;
1, 1, 3, 2;
1, 1, 1, 3, 2;
1, 1, 1, 3, 3;
1, 1, 1, 1, 4, 2;
1, 1, 1, 4, 2, 2;
1, 1, 1, 1, 1, 3, 4;
1, 1, 1, 1, 3, 4, 2;
1, 1, 1, 1, 2, 4, 2, 2;
1, 1, 1, 1, 1, 3, 5, 2;
1, 1, 1, 1, 1, 1, 3, 5, 2;
1, 1, 1, 1, 1, 3, 5, 2, 2;
1, 1, 1, 1, 1, 1, 1, 5, 4, 2;
1, 1, 1, 1, 1, 1, 5, 4, 2, 2;
...
For n = 10 the 10th row of A237593 is [6, 2, 1, 1, 1, 1, 2, 6]. When that row is interpreted as a symmetric Dyck path in the fourth quadrant using 20 line segments of length 1 the Dyck path looks like this:
.
|
|
|
|
|
_ _|
_|
_|
|
_ _ _ _ _ _|
.
The numbers of line segments of length 1 in the successive antidiagonals are respectively [2, 2, 2, 2, 8, 4] so the 10th row of triangle is [1, 1, 1, 1, 4, 2].
CROSSREFS
Row sums give A000027.
Row n has length A008619(n).
Column 1 gives A000012.
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Nov 19 2022
STATUS
approved
Table T(n,k), n >= 1 and k >= 0, read by antidiagonals, related to Jacobsthal numbers A001045.
+10
0
1, 2, 1, 3, 3, 3, 4, 5, 7, 5, 5, 7, 11, 13, 11, 6, 9, 15, 21, 27, 21, 7, 11, 19, 29, 43, 53, 43, 8, 13, 23, 37, 59, 85, 107, 85, 9, 15, 27, 45, 75, 117, 171, 213, 171, 10, 17, 31, 53, 91, 149, 235, 341, 427, 341, 11, 19, 35, 61, 107, 181, 299, 469
OFFSET
1,2
FORMULA
T(n,k) = T(1,k) + (n-1)*2^k.
T(n,k) = 2*T(n, k-1) + (-1)^k.
T(n,k) = T(n-1,k) + 2^k.
T(n,k) = 2^k * n - A001045(k).
T(n,k) = T(n,k-1) +2*T(n,k-2).
EXAMPLE
The array T(n,k), for n <= 1 and k >= 0, begins:
n = 1: 1, 1, 3, 5, 11, 21, 43, ... -> A001045(k+1)
n = 2: 2, 3, 7, 13, 27, 53, 107, ... -> A048573(k)
n = 3: 3, 5, 11, 21, 43, 85, 171, ... -> A001045(k+3)
n = 4: 4, 7, 15, 29, 59, 117, 235, ... -> ?
n = 5: 5, 9, 19, 37, 75, 149, 299, ... -> A062092(k+1)
n = 6: 6, 11, 23, 45, 91, 181, 363, ... -> ?
n = 7: 7, 13, 27, 53, 107, 213, 427, ... -> A048573(k+2)
CROSSREFS
Columns: A000027, A005408, A004767, A004770, A106839 for k = 0, 1, 2, 3, 4.
KEYWORD
nonn,tabl,easy
AUTHOR
Philippe Deléham, Jan 22 2023
STATUS
approved
Triangle read by rows where row n is the largest (or middle or n-th) column of the reverse pyramid summation of order n described in A359087.
+10
0
1, 2, 4, 3, 7, 19, 4, 10, 28, 78, 5, 13, 37, 105, 301, 6, 16, 46, 132, 382, 1108, 7, 19, 55, 159, 463, 1351, 3951, 8, 22, 64, 186, 544, 1594, 4680, 13758, 9, 25, 73, 213, 625, 1837, 5409, 15945, 47049, 10, 28, 82, 240, 706, 2080, 6138, 18132, 53610, 158616, 11, 31, 91, 267, 787, 2323, 6867, 20319, 60171, 178299, 528619
OFFSET
1,2
COMMENTS
The integer that is at the k-th row of the middle column of this pyramid of order n will be noted T(n,k).
Each row has n terms.
FORMULA
T(n,1) = n.
T(n,2) = 3n - 2.
T(n,3) = 9n - 8.
T(n,4) = 27n - 30.
T(n,5) = 81n - 104.
T(n,n) = A359087(n).
T(n,k) = 3^(k-1)*n - 2*A132894(k-1) for 1 <= k <= n (conjectured).
EXAMPLE
Triangle begins:
n=1: 1;
n=2: 2, 4;
n=3: 3, 7, 19;
n=4: 4, 10, 28, 78;
n=5: 5, 13, 37, 105, 301;
n=6: 6, 16, 46, 132, 382, 1108;
...
For n=5, the reverse pyramid summation is as follows and row 5 here is the middle column 5,13,37,...
1 2 3 4 5 4 3 2 1
6 9 12 13 12 9 6
27 34 37 34 27
98 105 98
301
PROG
(PARI) f(v) = if (#v == 1, v, vector(#v-2, i, v[i]+v[i+1]+v[i+2]));
row(n) = my(u = concat([1..n], Vecrev([1..n-1])), v=u, w = vector(n)); for (i=1, n, w[i] = v[#v\2+1]; v = f(v); ); w; \\ Michel Marcus, Jan 30 2023
CROSSREFS
Cf. A132894, A359087 (right diagonal).
Columns k=1..3: A000027, A016777, A017173.
KEYWORD
nonn,tabl
AUTHOR
Bernard Schott, Jan 27 2023
STATUS
approved
a(n) = (n + 1/3) * (3*n + 3)! / ((n + 1)!)^3.
+10
0
2, 120, 3920, 115500, 3279276, 91483392, 2527462080, 69413752980, 1898945262500, 51809303385840, 1410778953118080, 38360293308573600, 1041896542898685600, 28274302212143040000, 766761376923703054080, 20781963787558897929060, 563007692048242597348500, 15246741943087253044446000
OFFSET
0,1
MAPLE
a := n -> (n + 1/3)*(3*n + 3)!/(n + 1)!^3: seq(a(n), n = 0..17);
CROSSREFS
Family: A000027 (m=1), A257589 (m=2), this sequence (m=3).
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 15 2023
STATUS
approved
Table read by antidiagonals: row n gives the Euler transform of the sequence (2,...,2,0,0,...) that contains n 2s followed by 0s.
+10
0
1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 5, 8, 5, 1, 2, 5, 10, 14, 6, 1, 2, 5, 10, 18, 20, 7, 1, 2, 5, 10, 20, 30, 30, 8, 1, 2, 5, 10, 20, 34, 49, 40, 9, 1, 2, 5, 10, 20, 36, 59, 74, 55, 10, 1, 2, 5, 10, 20, 36, 63, 94, 110, 70, 11, 1, 2, 5, 10, 20, 36, 65, 104, 149, 158, 91, 12
OFFSET
1,3
EXAMPLE
Table begins:
| 0 1 2 3 4 5 6 7 8 9 10
--+----------------------------------
1 | 1 2 3 4 5 6 7 8 9 10 11
2 | 1 2 5 8 14 20 30 40 55 70 91
3 | 1 2 5 10 18 30 49 74 110 158 221
4 | 1 2 5 10 20 34 59 94 149 224 334
5 | 1 2 5 10 20 36 63 104 169 264 405
6 | 1 2 5 10 20 36 65 108 179 284 445
7 | 1 2 5 10 20 36 65 110 183 294 465
8 | 1 2 5 10 20 36 65 110 185 298 475
9 | 1 2 5 10 20 36 65 110 185 300 479
MATHEMATICA
Seed[i_, n_] := ConstantArray[2, i]~Join~ConstantArray[0, n - i];
A364842Table[n_] := Table[Seed[i, n] // EulerTransform, {i, 1, n}]
(*EulerTransform is defined in A005195*)
CROSSREFS
Cf. A000027 (row 1), A006918 (row 2), A117485 (row 3), A117486 ( row 4), A117487 (row 5), A160647 (row 6), A000712 (main diagonal).
Analogous for initial 1s sequence A008284.
Cf. A115994.
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Nov 09 2023
STATUS
approved
a(n) = number of polynomials of degree 4 in a regular Groebner basis (graded reverse lexicographic order) of n quadratic polynomials in n variables.
+10
0
0, 0, 1, 3, 5, 10, 14, 22, 29, 39, 50, 60, 76, 91, 105, 126, 146, 165, 189, 215, 240, 264, 297, 329, 360, 390, 430, 469, 507, 544, 588, 635, 681, 726, 770, 826, 881, 935
OFFSET
1,4
EXAMPLE
For n=3, the leading monomial is x3^4, so a(3) = 1.
For n=4, the 3 leading monomials are x1x4^3, x2x4^3, x3x4^3, so a(4) = 3.
PROG
(Magma)
function a(n);
F:=GF(251);
P<[x]>:=PolynomialRing(F, n, "grevlex");
M2:=[ &*[P| x[i] : i in s] : s in Multisets({1..n}, 2) ];
A:=[ &+[Random(F)*m : m in M2] : i in [1..n]];
G:=GroebnerBasis(A, 4);
return #[ g : g in G | TotalDegree(g) eq 4 ];
end function;
CROSSREFS
Cf. A000027 (degree 2), A006463 (degree 3).
KEYWORD
nonn,more
AUTHOR
Gilles Macario-Rat, Sep 18 2023
STATUS
approved
T(n, k) = Sum_{m = 0..n-1} Stirling1(m+1, k)*binomial(n, m)*(-1)^(n + k), where "Stirling1" are the signed Stirling numbers of the first kind.
+10
0
1, 1, 2, 4, 6, 3, 15, 30, 18, 4, 76, 165, 125, 40, 5, 455, 1075, 930, 380, 75, 6, 3186, 8015, 7679, 3675, 945, 126, 7, 25487, 67536, 70042, 37688, 11550, 2044, 196, 8, 229384, 634935, 702372, 414078, 144417, 30870, 3990, 288, 9, 2293839, 6591943, 7696245, 4886390, 1885065, 463092, 73080, 7200, 405, 10
OFFSET
1,3
COMMENTS
To use the unsigned Stirling numbers rewrite the formula as: T(n, k) = Sum_{m = 0..n-1} abs(Stirling1(m+1, k))*binomial(n, m)*(-1)^(1+m+n). Replacing in this formula Stirling1 (A008275) by Stirling2 (A048993) one obtains a shifted version of A321331.
FORMULA
T(n+1, n) = n^2*(n+1)/2 = A002411(n).
T(n, n-2) = 6*T(n-1, n-3) - 15*T(n-2, n-4) + 20*T(n-3, n-5) - 15*T(n-4, n-6) + 6*T(n-5, n-7) - T(n-6, n-8), for n > 8.
T(n, n-k) = (-1)^k*Sum_{m=0..n-1} Stirling1(m+1, n-k)*binomial(n, m).
EXAMPLE
Triangle begins:
1;
1, 2;
4, 6, 3;
15, 30, 18, 4;
76, 165, 125, 40, 5;
455, 1075, 930, 380, 75, 6;
MAPLE
T := (n, k) -> local m; add(Stirling1(m+1, k)*binomial(n, m)*(-1)^(n + k), m = 0..n-1): seq(seq(T(n, k), k = 1..n), n = 1..9); # Peter Luschny, Nov 10 2023
PROG
(PARI) T(n, k) = sum(m=0, n-1, stirling(m+1, k)*binomial(n, m)*(-1)^(n+k))
CROSSREFS
Cf. A002411, A002467 (first column), A000027 (main diagonal), A008275.
Cf. A180191(n+1) (row sums), A321331 (variant with Stirling2).
KEYWORD
nonn,tabl
AUTHOR
Thomas Scheuerle, Nov 10 2023
STATUS
approved
a(n) = n for n a power of 2; otherwise let 2^r be the greatest power of 2 which does not exceed n, then a(n) = the least novel m*a(k) where k = n - 2^r, and m is not a prior term.
+10
0
1, 2, 3, 4, 5, 12, 18, 8, 6, 14, 21, 28, 35, 84, 126, 16, 7, 20, 27, 36, 45, 108, 162, 72, 54, 140, 189, 252, 315, 756, 1134, 32, 9, 22, 30, 40, 50, 120, 180, 80, 60, 154, 210, 280, 350, 840, 1260, 160, 70, 200, 270, 360, 450, 1080, 1620, 720, 540, 1400, 1890, 2520, 3150, 7560, 11340, 64, 10
OFFSET
1,2
COMMENTS
Based on a recursion similar to that which produces the Doudna sequence, A005940, using the same definition of k, the "distance" from the greatest power of 2 less than n (compare with A365436).
Sequence is conjectured to be a permutation of the positive integers, A000027.
FORMULA
a(2^k) = 2^k for all k >= 0.
a(2^k + 1) = m, the least unused term up to a(2^k), where multiples (other than 1) of m have been used to generate terms between a(2^(k-1)) and a(2^k) except for those which have occurred earlier; see Example.
EXAMPLE
a(3) = 3 since k = 1, a(1) = 1, and 3 is the smallest number which has not already occurred.
a(7) = 18, since k = 3, a(3) = 3, m = 6 is the least unused number and 18 has not already occurred.
For n = 18, k = 2, a(2) = 2, m = 9 is the least unused number, so we should expect a(18) = 2*9 = 18, but 18 has already occurred at a(7). Therefore we increment to m = 10, the next smallest unused number, and find a(18) = 20 (which has not occurred previously).
PROG
(PARI) lista(nn) = my(va=vector(nn)); for (n=1, nn, my(p=2^logint(n, 2)); if (p == n, va[n] = n, my(k=n-p, m=1); while (#select(x->(x==m), va) || #select(x->(x==m*va[k]), va), m++); va[n] = m*va[k]; ); ); va; \\ Michel Marcus, Dec 17 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 1.230 seconds