%I #32 Dec 15 2022 13:43:56
%S 1,1,1,1,2,1,1,2,1,2,2,1,1,1,3,1,1,3,2,1,1,1,3,2,1,1,1,3,3,1,1,1,1,4,
%T 2,1,1,1,4,2,2,1,1,1,1,1,3,4,1,1,1,1,3,4,2,1,1,1,1,2,4,2,2,1,1,1,1,1,
%U 3,5,2,1,1,1,1,1,1,3,5,2,1,1,1,1,1,3,5,2,2,1,1,1,1,1,1,1,5,4,2,1,1,1,1,1,1,5,4,2,2
%N Irregular triangle read by rows: T(n,k) is one half of the number of line segments of length 1 in the k-th antidiagonal of the Dyck path described in the n-th row of A237593.
%e Triangle begins (first 19 rows):
%e 1;
%e 1, 1;
%e 1, 2;
%e 1, 1, 2;
%e 1, 2, 2;
%e 1, 1, 1, 3;
%e 1, 1, 3, 2;
%e 1, 1, 1, 3, 2;
%e 1, 1, 1, 3, 3;
%e 1, 1, 1, 1, 4, 2;
%e 1, 1, 1, 4, 2, 2;
%e 1, 1, 1, 1, 1, 3, 4;
%e 1, 1, 1, 1, 3, 4, 2;
%e 1, 1, 1, 1, 2, 4, 2, 2;
%e 1, 1, 1, 1, 1, 3, 5, 2;
%e 1, 1, 1, 1, 1, 1, 3, 5, 2;
%e 1, 1, 1, 1, 1, 3, 5, 2, 2;
%e 1, 1, 1, 1, 1, 1, 1, 5, 4, 2;
%e 1, 1, 1, 1, 1, 1, 5, 4, 2, 2;
%e ...
%e For n = 10 the 10th row of A237593 is [6, 2, 1, 1, 1, 1, 2, 6]. When that row is interpreted as a symmetric Dyck path in the fourth quadrant using 20 line segments of length 1 the Dyck path looks like this:
%e .
%e |
%e |
%e |
%e |
%e |
%e _ _|
%e _|
%e _|
%e |
%e _ _ _ _ _ _|
%e .
%e The numbers of line segments of length 1 in the successive antidiagonals are respectively [2, 2, 2, 2, 8, 4] so the 10th row of triangle is [1, 1, 1, 1, 4, 2].
%Y Row sums give A000027.
%Y Row n has length A008619(n).
%Y Column 1 gives A000012.
%Y Cf. A196020, A235791, A236104, A237270, A237271, A237591, A237593, A245092, A262626, A339575.
%K nonn,tabf
%O 1,5
%A _Omar E. Pol_, Nov 19 2022