editing
approved
editing
approved
proposed
approved
editing
proposed
Essentially the same as A023036.
Essentially the same as A023036
proposed
editing
editing
proposed
f[n_] := Count[IntegerPartitions[n, {2}], _?(And @@ PrimeQ[#] &)]; seq[max_] := Module[{s = Table[0, {max}], n = 1, c = 0, k}, While[c < max, k = f[n]; If[k < max && s[[k + 1]] == 0, c++; s[[k + 1]] = n]; n++]; s]; seq[50] (* Amiram Eldar, Mar 11 2022 *)
proposed
editing
editing
proposed
allocated for Chai Wah WuSmallest number that can be expressed as the sum of two primes in exactly n ways or -1 if no such number exists.
1, 4, 10, 22, 34, 48, 60, 78, 84, 90, 114, 144, 120, 168, 180, 234, 246, 288, 240, 210, 324, 300, 360, 474, 330, 528, 576, 390, 462, 480, 420, 570, 510, 672, 792, 756, 876, 714, 798, 690, 1038, 630, 1008, 930, 780, 960, 870, 924, 900, 1134, 1434, 840, 990, 1302
0,2
(Python)
from itertools import count
from sympy import nextprime
def A352296(n):
if n == 0:
return 1
pset, plist, pmax = {2}, [2], 4
for m in count(2):
if m > pmax:
plist.append(nextprime(plist[-1]))
pset.add(plist[-1])
pmax = plist[-1]+2
c = 0
for p in plist:
if 2*p > m:
break
if m - p in pset:
c += 1
if c == n:
return m
allocated
nonn
Chai Wah Wu, Mar 11 2022
approved
editing