[go: up one dir, main page]

login
A352296
Smallest number that can be expressed as the sum of two primes in exactly n ways or -1 if no such number exists.
2
1, 4, 10, 22, 34, 48, 60, 78, 84, 90, 114, 144, 120, 168, 180, 234, 246, 288, 240, 210, 324, 300, 360, 474, 330, 528, 576, 390, 462, 480, 420, 570, 510, 672, 792, 756, 876, 714, 798, 690, 1038, 630, 1008, 930, 780, 960, 870, 924, 900, 1134, 1434, 840, 990, 1302
OFFSET
0,2
COMMENTS
Conjecture: a(n) != -1 for all n.
If n > 0 and a(n) != -1, then a(n) is even.
a(0) = A014092(1)
a(1) = A067187(1)
a(2) = A067188(1)
a(3) = A067189(1)
a(4) = A067190(1)
a(5) = A067191(1)
a(6) = A066722(1)
a(7) = A352229(1)
a(8) = A352230(1)
a(9) = A352231(1)
a(10) = A352233(1)
MATHEMATICA
f[n_] := Count[IntegerPartitions[n, {2}], _?(And @@ PrimeQ[#] &)]; seq[max_] := Module[{s = Table[0, {max}], n = 1, c = 0, k}, While[c < max, k = f[n]; If[k < max && s[[k + 1]] == 0, c++; s[[k + 1]] = n]; n++]; s]; seq[50] (* Amiram Eldar, Mar 11 2022 *)
PROG
(Python)
from itertools import count
from sympy import nextprime
def A352296(n):
if n == 0:
return 1
pset, plist, pmax = {2}, [2], 4
for m in count(2):
if m > pmax:
plist.append(nextprime(plist[-1]))
pset.add(plist[-1])
pmax = plist[-1]+2
c = 0
for p in plist:
if 2*p > m:
break
if m - p in pset:
c += 1
if c == n:
return m
CROSSREFS
KEYWORD
nonn
AUTHOR
Chai Wah Wu, Mar 11 2022
STATUS
approved